The interaction of longitudinal vortex pairs with a turbulent boundary layer

被引:2
|
作者
Mole, Andrew [1 ]
Skillen, Alex [1 ]
Revell, Alistair [1 ]
机构
[1] Univ Manchester, Sch Engn, Dept Mech Aerosp & Civil Engn MACE, Manchester M13 9PL, England
基金
英国工程与自然科学研究理事会;
关键词
turbulent boundary layers; rotating turbulence; INFLOW CONDITIONS; EDDY SIMULATION; VORTICES; MODELS; FLOW; AIRFOIL;
D O I
10.1017/jfm.2022.952
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, we demonstrate an efficient approach to investigating the interaction of vortex pairs on a turbulent boundary layer. Our aim is to assess how vortex characteristics impact the downstream flow. Wall-modelled large eddy simulations are used together with an inlet defined by a Batchelor vortex model superimposed on a turbulent boundary layer profile, generated using synthetic turbulence and a precursor Reynolds-averaged Navier-Stokes calculation. This set-up allows for the efficient testing of multiple configurations whilst providing adequate resolution of outer boundary layer and the vortex-vortex interactions. After validating the methodology, we report a set of simulations for both co-and counter-rotating vortex pairs at different separations and asymmetric strengths. The separation distance between the vortices was found to have a significant effect upon the merging of the vortices. Asymmetric strength vortex pairs, analogous to vortex generators in yaw, demonstrate performance independent of flow direction for small angles. Detailed analysis of this flow provides insight into turbulence generation mechanisms and Reynolds stress anisotropy - valuable reference data for the development of lower-order models. Skin-friction enhancement is shown to be more effective for counter-rotating vortex pairs than co-rotating pairs of the same strength and spacing. Additionally, a wider spacing between the initial vortex positions results in a faster rise in the skin-friction coefficient.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Properties of synthetic and natural streamwise vortex pairs in the near-wall region of turbulent boundary layers
    Sun, Weiqi
    Philip, Jimmy
    Schroeder, Wolfgang
    Klewicki, Joseph
    PHYSICAL REVIEW FLUIDS, 2025, 10 (03):
  • [22] Magnetohydrodynamic Control of a Hypersonic Shock-Turbulent Boundary Layer Interaction
    Luo, Shichao
    Wu, Liyin
    Chang, Yu
    JOURNAL OF AEROSPACE ENGINEERING, 2024, 37 (03)
  • [23] Unsteady aspects of an incident shock wave/turbulent boundary layer interaction
    Humble, R. A.
    Scarano, F.
    van Oudheusden, B. W.
    JOURNAL OF FLUID MECHANICS, 2009, 635 : 47 - 74
  • [24] Turbulent boundary layer separation control and loss evaluation of low profile vortex generators
    Lengani, Davide
    Simoni, Daniele
    Ubaldi, Marina
    Zunino, Pietro
    Bertini, Francesco
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2011, 35 (08) : 1505 - 1513
  • [25] The turbulent rotating-disk boundary layer
    Imayama, Shintaro
    Lingwood, R. J.
    Alfredsson, P. Henrik
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2014, 48 : 245 - 253
  • [26] Interfaces and internal layers in a turbulent boundary layer
    Eisma, Jerke
    Westerweel, Jerry
    Ooms, Gijs
    Elsinga, Gerrit E.
    PHYSICS OF FLUIDS, 2015, 27 (05)
  • [27] Triadic scale interactions in a turbulent boundary layer
    Duvvuri, Subrahmanyam
    McKeon, Beverley J.
    JOURNAL OF FLUID MECHANICS, 2015, 767
  • [28] A fully synthetic turbulent boundary condition with a homogeneous vortex distribution
    Penttinen, Olle
    Nilsson, Hakan
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 190 : 23 - 32
  • [29] Anisotropy of a turbulent boundary layer
    Liu, Kunlun
    Pletcher, Richard H.
    JOURNAL OF TURBULENCE, 2008, 9 (18): : 1 - 18
  • [30] Interaction of a vortex ring with a natural convective layer
    Palacios-Morales, C.
    Gelderblom, G.
    Solorio, F.
    Salinas-Vazquez, M.
    Zenit, R.
    PHYSICS OF FLUIDS, 2014, 26 (08)