Stability of rank 2 vector bundles along isomonodromic deformations

被引:7
|
作者
Heu, Viktoria [1 ]
机构
[1] Inst Rech Math Rennes, Rennes, France
关键词
CURVES;
D O I
10.1007/s00208-008-0316-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in the stability of holomorphic rank 2 vector bundles of degree 0 over compact Riemann surfaces, which are provided with irreducible meromophic tracefree connections. In the case of a logarithmic connection on the Riemann sphere, such a vector bundle will be trivial up to the isomonodromic deformation associated to a small move of the poles, according to a result of A. Bolibruch. In the general case of meromorphic connections over Riemann surfaces of arbitrary genus, we prove that the vector bundle will be semi-stable, up to a small isomonodromic deformation. More precisely, the vector bundle underlying the universal isomonodromic deformation is generically semi-stable along the deformation, and even maximally stable. For curves of genus g >= 2, this result is non-trivial even in the case of non-singular connections.
引用
收藏
页码:463 / 490
页数:28
相关论文
共 50 条
  • [1] Stability of rank 2 vector bundles along isomonodromic deformations
    Viktoria Heu
    Mathematische Annalen, 2009, 344 : 463 - 490
  • [2] Isomonodromic Deformations and Very Stable Vector Bundles of Rank Two
    Indranil Biswas
    Viktoria Heu
    Jacques Hurtubise
    Communications in Mathematical Physics, 2017, 356 : 627 - 640
  • [3] Isomonodromic Deformations and Very Stable Vector Bundles of Rank Two
    Biswas, Indranil
    Heu, Viktoria
    Hurtubise, Jacques
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (02) : 627 - 640
  • [4] Isomonodromic deformations of irregular connections and stability of bundles
    Biswas, Indranil
    Heu, Viktoria
    Hurtubise, Jacques
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2021, 29 (01) : 1 - 18
  • [5] Isomonodromic deformations of logarithmic connections and stable parabolic vector bundles
    Biswas, Indranil
    Heu, Viktoria
    Hurtubise, Jacques
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (02) : 191 - 227
  • [6] UNIVERSAL ISOMONODROMIC DEFORMATIONS OF MEROMORPHIC RANK 2 CONNECTIONS ON CURVES
    Heu, Viktoria
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (02) : 515 - 549
  • [7] Isomonodromic deformations along a stratum of the coalescence locus
    Guzzetti, Davide
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (45)
  • [8] Isomonodromic deformations of logarithmic connections and stability
    Biswas, Indranil
    Heu, Viktoria
    Hurtubise, Jacques
    MATHEMATISCHE ANNALEN, 2016, 366 (1-2) : 121 - 140
  • [9] Isomonodromic deformations of logarithmic connections and stability
    Indranil Biswas
    Viktoria Heu
    Jacques Hurtubise
    Mathematische Annalen, 2016, 366 : 121 - 140
  • [10] The Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces
    D. V. Artamonov
    Theoretical and Mathematical Physics, 2012, 171 : 739 - 753