Products of Finite Supersoluble Groups

被引:6
作者
Liu, Xi [1 ]
Guo, Wenbin [1 ]
Shum, K. P. [2 ]
机构
[1] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
finite group; supersoluble group; completely c-permutable subgroup; SUBGROUPS;
D O I
10.1142/S1005386709000327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H and T be subgroups of a finite group G. We say that H is completely c-permutable with T in G if there exists an element x is an element of < H, T > such that HTx = T-x H. In this paper, we use this concept to determine the supersolubility of a group G = AB, where A and B are supersoluble subgroups of G. Some criterions of supersolubility of such groups are obtained and some known results are generalized.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 15 条
[1]   ON THE SUPERSOLVABILITY OF FINITE-GROUPS [J].
ASAAD, M ;
SHAALAN, A .
ARCHIV DER MATHEMATIK, 1989, 53 (04) :318-326
[2]  
Baer R, 1957, Illinois J. Math, V1, P115
[3]   Mutually permutable products of finite groups [J].
Ballester-Bolinches, A ;
Pérez-Ramos, MD ;
Pedraza-Aguilera, MC .
JOURNAL OF ALGEBRA, 1999, 213 (01) :369-377
[4]  
CAROCCA A, 1992, HOKKAIDO MATH J, V21, P395
[5]  
Cunihin S.A., 1930, CR HEBD ACAD SCI, V191, P397
[6]   PRODUCTS OF NORMAL SUPERSOLVABLE SUBGROUPS [J].
FRIESEN, DK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 30 (01) :46-&
[7]  
GUO W, 2005, SE ASIAN B MATH, V29, P493
[8]  
Guo WB, 2006, PUBL MATH-DEBRECEN, V68, P433
[9]  
Guo WB, 2000, THEORY CLASSES GROUP
[10]   Schur-Zassenhaus theorem for X-permutable subgroups [J].
Guo, Wenbin ;
Shum, K. P. ;
Skiba, Alexander N. .
ALGEBRA COLLOQUIUM, 2008, 15 (02) :185-192