Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium

被引:37
|
作者
Rauf, A. [1 ,2 ]
Abbas, Z. [1 ]
Shehzad, S. A. [2 ]
机构
[1] Islamia Univ Bahawalpur, Dept Math, Bahawalpur 63100, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Sahiwal 57000, Pakistan
关键词
time-dependent flow; oscillatory disk; porous medium; magnetohydrodynamic (MHD); Maxwell-Cattaneo law; numerical solution; HEAT-TRANSFER; CHRISTOV HEAT; ROTATING-DISK; FLUID-FLOW; NUMERICAL-SIMULATION; HYDROMAGNETIC FLOW; NANOFLUID FLOW; GENERATION/ABSORPTION; CONVECTION; LIQUID;
D O I
10.1007/s10483-019-2488-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present study aims to investigate the salient features of incompressible, hydromagnetic, three-dimensional flow of viscous fluid subject to the oscillatory motion of a disk. The rotating disk is contained in a porous medium. Furthermore, a time-invariant version of the Maxwell-Cattaneo law is implemented in the energy equation. The flow problem is normalized by obtaining similarity variables. The resulting nonlinear system is solved numerically using the successive over-relaxation method. The main results are discussed through graphical representations and tables. It is perceived that the thermal relaxation time parameter decreases the temperature curves and increases the heat transfer rate. The oscillatory curves for the velocity field demonstrate a decreasing tendency with the increasing porosity parameter values. Two- and three-dimensional flow phenomena are also shown through graphical results.
引用
收藏
页码:837 / 850
页数:14
相关论文
共 50 条