The effect of disorder geometry on the critical force in disordered elastic systems

被引:10
|
作者
Demery, Vincent [1 ,2 ]
Lecomte, Vivien [3 ,4 ]
Rosso, Alberto [5 ]
机构
[1] Univ Paris 06, CNRS, Inst Jean Le Rond Dalembert, UMR 7190, F-75005 Paris, France
[2] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[3] Univ Paris 06, CNRS, Lab Probabil & Modeles Aleatoires, UMR 7599, F-75013 Paris, France
[4] Univ Paris Diderot, F-75013 Paris, France
[5] Univ Paris 11, CNRS, Lab Phys Theor & Modeles Stat, UMR 8626, F-91405 Orsay, France
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2014年
关键词
classical phase transitions (theory); interfaces in random media (theory); disordered systems (theory); heterogeneous materials (theory); RANDOM-MEDIA; INTERFACES; DYNAMICS; MOTION; CREEP; WAVES; STATE;
D O I
10.1088/1742-5468/2014/03/P03009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We address the effect of disorder geometry on the critical force in disordered elastic systems. We focus on the model system of a long-range elastic line driven in a random landscape. In the collective pinning regime. we compute the critical force perturbatively. Not only does our expression for the critical force confirm previous results on its scaling with respect to the microscopic disorder parameters, but it also provides its precise dependence on the disorder geometry (represented by the disorder two-point correlation function). Our results are successfully compared with the results of numerical simulations for random field and random bond disorders.
引用
收藏
页数:20
相关论文
共 25 条
  • [1] Disordered elastic systems and one-dimensional interfaces
    Agoritsas, E.
    Lecomte, V.
    Giamarchi, T.
    PHYSICA B-CONDENSED MATTER, 2012, 407 (11) : 1725 - 1733
  • [2] Thermal effects in the dynamics of disordered elastic systems
    Bustingorry, S.
    Kolton, A. B.
    Rosso, A.
    Krauth, W.
    Giamarchi, T.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (3-4) : 444 - 446
  • [3] Nonuniversal critical behavior in disordered pseudospin-1 systems
    Fang, A.
    Zhang, Z. Q.
    Louie, Steven G.
    Chan, C. T.
    PHYSICAL REVIEW B, 2019, 99 (01)
  • [4] The effect of elastic and viscous force fields on bimanual coordination
    Kaur, Jaskanwaljeet
    Proksch, Shannon
    Balasubramaniam, Ramesh
    EXPERIMENTAL BRAIN RESEARCH, 2023, 241 (04) : 1117 - 1130
  • [5] Anti-Zeno effect for quantum transport in disordered systems
    Fujii, Keisuke
    Yamamoto, Katsuji
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [6] EFFECT OF ELASTIC DRIVING FORCE ON THE EVOLUTION OF MICROSTRUCTURES IN THE SECONDARY CREEP STAGE
    Tanaka, Katsushi
    Hashimoto, Wataro
    Inoue, Toru
    Inui, Haruyuki
    EURO SUPERALLOYS 2010, 2011, 278 : 126 - 131
  • [7] Non-Gaussian tail in the force distribution: a hallmark of correlated disorder in the host media of elastic objects
    Aragon Sanchez, Jazmin
    Rumi, Gonzalo
    Cortes Maldonado, Raul
    Cejas Bolecek, Nestor Rene
    Puig, Joaquin
    Pedrazzini, Pablo
    Nieva, Gladys
    Dolz, Moira, I
    Konczykowski, Marcin
    van der Beek, Cornelis J.
    Kolton, Alejandro B.
    Fasano, Yanina
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems
    Reichhardt, C.
    Reichhardt, C. J. Olson
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [9] Characterizing Time Irreversibility in Disordered Fermionic Systems by the Effect of Local Perturbations
    Vardhan, Shreya
    De Tomasi, Giuseppe
    Heyl, Markus
    Heller, Eric J.
    Pollmann, Frank
    PHYSICAL REVIEW LETTERS, 2017, 119 (01)
  • [10] Effect of inertia on sheared disordered solids: Critical scaling of avalanches in two and three dimensions
    Salerno, K. Michael
    Robbins, Mark O.
    PHYSICAL REVIEW E, 2013, 88 (06):