REGULARITY CRITERIA FOR THE MAGNETOHYDRODYNAMIC EQUATIONS WITH PARTIAL VISCOUS TERMS AND THE LERAY-α-MHD MODEL

被引:35
作者
Fan, Jishan [1 ]
Ozawa, Tohru [2 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Peoples R China
[2] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
关键词
MHD equations; regularity criterion; Leray-alpha-MHD model; interpolation inequality in Besov spaces; NAVIER-STOKES EQUATIONS; CAMASSA-HOLM EQUATIONS; EVOLUTION-EQUATIONS; WEAK SOLUTIONS; BESOV-SPACES; TURBULENCE; INEQUALITIES; EULER;
D O I
10.3934/krm.2009.2.293
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some regularity conditions for the MHD equations with partial viscous terms and the Leray-alpha-MHD model. Since the solutions to the Leray-alpha-MHD model are smoother than that of the original MHD equations, we are able to obtain better regularity conditions in terms of the magnetic field B only.
引用
收藏
页码:293 / 305
页数:13
相关论文
共 27 条
[1]  
[Anonymous], 2010, Theory of Function Spaces
[2]   The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 275 (03) :861-872
[3]   The Camassa-Holm equations and turbulence [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICA D, 1999, 133 (1-4) :49-65
[4]   Camassa-Holm equations as a closure model for turbulent channel and pipe flow [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5338-5341
[5]   A connection between the Camassa-Holm equations and turbulent flows in channels and pipes [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICS OF FLUIDS, 1999, 11 (08) :2343-2353
[6]   On a Leray-α model of turbulence [J].
Cheskidov, A ;
Holm, DD ;
Olson, E ;
Titi, ES .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2055) :629-649
[7]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[8]  
Duvaut G., 1972, Arch. Ration. Mech. Anal, V46, P241, DOI DOI 10.1007/BF00250512
[9]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[10]   The three dimensional viscous camassa-holm equations, and their relation to the navier-stokes equations and turbulence theory [J].
Foias C. ;
Holm D.D. ;
Titi E.S. .
Journal of Dynamics and Differential Equations, 2002, 14 (1) :1-35