Sum-connectivity index of a graph

被引:20
作者
Das, Kinkar Ch. [1 ]
Das, Sumana [2 ]
Zhou, Bo [3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Sch Informat & Commun Engn, Suwon 440746, South Korea
[3] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
基金
新加坡国家研究基金会;
关键词
Graph; Randic index; sum-connectivity index; minimum degree; TREES;
D O I
10.1007/s11464-015-0470-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple connected graph, and let d (i) be the degree of its i-th vertex. The sum-connectivity index of the graph G is defined as . We discuss the effect on chi(G) of inserting an edge into a graph. Moreover, we obtain the relations between sum-connectivity index and RandiA double dagger index.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 13 条
[1]   Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number [J].
Du, Zhibin ;
Zhou, Bo ;
Trinajstic, Nenad .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (02) :842-855
[2]  
Li X., 2006, MATH CHEM MONOGRAPHS, V31, P89
[3]  
Li XL, 2008, MATCH-COMMUN MATH CO, V59, P127
[4]  
Lucic B., 2010, Novel Molecular Structure Descriptors-Theory and Applications I, MCM 8, P101
[5]   Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons [J].
Lucic, Bono ;
Trinajstic, Nenad ;
Zhou, Bo .
CHEMICAL PHYSICS LETTERS, 2009, 475 (1-3) :146-148
[6]   CHARACTERIZATION OF MOLECULAR BRANCHING [J].
RANDIC, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (23) :6609-6615
[7]  
Tache RM, 2014, MATCH-COMMUN MATH CO, V72, P761
[8]  
Todeschini R., 2008, Handbook of Molecular Descriptors
[9]  
Tomescu I, 2014, MATCH-COMMUN MATH CO, V72, P715
[10]  
Tomescu I, 2013, MATCH-COMMUN MATH CO, V69, P535