Electron paramagnetic resonance and electron-nuclear double resonance study of Mn2+ ions in CdGeAs2 crystals

被引:6
|
作者
Evans, S. M.
Garces, N. Y.
DeMattei, R. C.
Feigelson, R. S.
Zawilski, K. T.
Giles, N. C.
Halliburton, L. E. [1 ]
机构
[1] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
[2] Stanford Univ, Mat Res Ctr, Stanford, CA 94305 USA
[3] BAE Syst, Nashua, NH 03061 USA
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2006年 / 243卷 / 15期
关键词
P-TYPE CDGEAS2; OPTICAL-ABSORPTION; ESR-ANALYSIS; SEMICONDUCTORS; CHALCOPYRITE; FERROMAGNETISM; TEMPERATURE; GENERATION; MANGANESE; GAP;
D O I
10.1002/pssb.200541162
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) have been used to characterize Mn2+ (3d(5)) ions in CdGeAs2 crystals grown by the horizontal Bridgman method. These samples were p-type with room-temperature hole concentrations ranging from 2 x 10(15) cm(-3) to 5 x 10(16) cm(-3). The Mn2+ ions substitute for the Cd2+ ions in this tetragonal chalcopyrite lattice, and form "deep" isoelectronic centers. Their g values and crystal-field parameters are g(parallel to) = 2.0025, g(perpendicular to) = 2.0011, D = 118.8 MHz, a + 2/3F = 18.4 MHz, and a = -0.3 MHz. The hyperfine and nuclear electric quadrupole parameters for the Mn-55 nucleus are A(parallel to) = -154.94 MHz, A(perpendicular to) = =155.69 MHz, and P = 0.622 MHz. Hyperfine parameters for one set of nearby Cd nuclei and two sets of nearby As nuclei were also determined using ENDOR. No evidence was found in these doped bulk crystals to suggest that Mn4+ ions substitute for Ge4+ ions. (C) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:4070 / 4079
页数:10
相关论文
共 50 条
  • [1] Local structure of Mn2+ ions in CdGeAs2 crystal
    Li, Dongyang
    Du, Maolu
    Miao, Feng
    Yi, Guohua
    Zhao, Lin
    PHYSICA B-CONDENSED MATTER, 2010, 405 (17) : 3808 - 3810
  • [2] Electron-nuclear double resonance study of V4+ ions in VO2 crystals
    Bunton, P. H.
    Baker, D. B.
    Engquist, D. E.
    Klemm, M.
    Horn, S.
    Yang, Shan
    Evans, S. M.
    Halliburton, L. E.
    SOLID STATE COMMUNICATIONS, 2009, 149 (41-42) : 1818 - 1821
  • [3] Electron Paramagnetic Resonance Characterization of Mn2+ Ion in GaAs:Mn Crystal
    Yeom, Tae Ho
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (10)
  • [4] The fate of Mn2+ ions inside Saccharomyces cerevisiae cells seen by electron paramagnetic resonance
    Farcasanu, IC
    Ohta, N
    Miyakawa, T
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1996, 60 (03) : 468 - 471
  • [5] Electron paramagnetic resonance and optical absorption studies on Mn2+ ions doped in KZnCISO4.3H2O single crystals
    Rao, JL
    Raju, BDP
    Gopal, NO
    Narasimhulu, KV
    PHYSICA B-CONDENSED MATTER, 2005, 355 (1-4) : 207 - 215
  • [6] ELECTRON-PARAMAGNETIC-RESONANCE OF MN2+ IN STRAINED-LAYER SEMICONDUCTOR SUPERLATTICES
    QAZZAZ, M
    YANG, G
    XIN, SH
    MONTES, L
    LUO, H
    FURDYNA, JK
    SOLID STATE COMMUNICATIONS, 1995, 96 (06) : 405 - 409
  • [7] Mn2+ electron paramagnetic resonance study of a sodium borosilicate glass prepared by the sol-gel method
    Rumori, P
    Deroide, B
    Abidi, N
    El Mkami, H
    Zanchetta, JV
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1998, 59 (6-7) : 959 - 967
  • [8] Electron Paramagnetic Resonance of Mn2+-Doped Cadmium Formate Dihydrate Single Crystals
    Mishra, Indrajeet
    Kripal, Ram
    Misra, Sanjay
    CHINESE PHYSICS LETTERS, 2012, 29 (03)
  • [9] Investigation of Mn2+ Diffusion in Lime (CaO) Using Electron Magnetic Resonance
    de Biasi, R. S.
    Grillo, M. L. N.
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2014, 17 (02): : 434 - 435
  • [10] Studying metal impurities (Mn2+, Cu2+, Fe3+) in calcium phosphates by electron paramagnetic resonance
    Iskhakova, K.
    Murzakhanov, F.
    Mamin, G.
    Putlyaev, V
    Klimashina, E.
    Fadeeva, I
    Fomin, A.
    Barinov, S.
    Maltsev, A.
    Bakhteev, S.
    Yusupov, R.
    Gafurov, M.
    Orlinskii, S.
    THERMAL METHODS FOR ENHANCED OIL RECOVERY: LABORATORY TESTING, SIMULATION AND OILFIELDS APPLICATIONS (THEOR2017), 2018, 155