High-Speed Reconciliation for CVQKD Based on Spatially Coupled LDPC Codes

被引:6
作者
Jiang, Xue-Qin [1 ]
Yang, Siyuan [1 ]
Huang, Peng [2 ]
Zeng, Guihua [2 ]
机构
[1] Donghua Univ, Sch Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Shanghai Jiao Tong Univ, Ctr Quantum Sensing & Informat Proc, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2018年 / 10卷 / 04期
基金
中国国家自然科学基金;
关键词
Continuous variable quantum key distribution (CVQKD); reconciliation efficiency; low-density parity-check (LDPC) code; QUANTUM KEY DISTRIBUTION; DISTRIBUTION ROBUST; GAUSSIAN ATTACKS; OPTIMALITY;
D O I
10.1109/JPHOT.2018.2853736
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The speed of continuous variable quantum key distribution is limited by the reconciliation efficiency and the reconciliation frame error rate (FER) in the reconciliation phase. In this paper, we propose an approach that may increase the reconciliation efficiency and decrease the FER. In detail, to increase the reconciliation efficiency, rather than using the block low-density parity-check (LDPC) codes, such as quasi-cyclic LDPC codes, multiedge-type LDPC codes, and punctured LDPC codes, this paper introduces spatially coupled (SC) LDPC codes to the reconciliation phase. To decrease the FER, we propose a new reconciliation scheme based on the special structure of SC-LDPC codes. To demonstrate the performance of the proposed approach, we construct the SC-LDPC codes based on quasi-cyclic repeat-accumulate codes. It is shown that the proposed scheme leads to higher reconciliation speed than that of the previous reconciliation schemes.
引用
收藏
页数:10
相关论文
共 40 条
[1]  
[Anonymous], 2011, Physical-layer security:from information theory to security engineering, DOI DOI 10.1017/CBO9780511977985
[2]  
[Anonymous], 2004, Error Control Coding
[3]  
[Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
[4]  
[Anonymous], 2009, 302 307 EN
[5]   Array Convolutional Low-Density Parity-Check Codes [J].
Baldi, Marco ;
Cancellieri, Giovanni ;
Chiaraluce, Franco .
IEEE COMMUNICATIONS LETTERS, 2014, 18 (02) :336-339
[6]   Time-varying periodic convolutional codes with low-density parity-check matrix [J].
Felstrom, AJ ;
Zigangirov, KS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) :2181-2191
[7]   Field test of a continuous-variable quantum key distribution prototype [J].
Fossier, S. ;
Diamanti, E. ;
Debuisschert, T. ;
Villing, A. ;
Tualle-Brouri, R. ;
Grangier, P. .
NEW JOURNAL OF PHYSICS, 2009, 11
[8]   Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks [J].
Furrer, F. ;
Franz, T. ;
Berta, M. ;
Leverrier, A. ;
Scholz, V. B. ;
Tomamichel, M. ;
Werner, R. F. .
PHYSICAL REVIEW LETTERS, 2012, 109 (10)
[9]   Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution [J].
Garcia-Patron, Raul ;
Cerf, Nicolas J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (19)
[10]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195