PALM and STORM: Into large fields and high-throughput microscopy with sCMOS detectors

被引:34
作者
Almada, Pedro
Culley, Sian
Henriques, Ricardo [1 ]
机构
[1] UCL, Quantitat Imaging & NanoBiophys Grp, MRC, Mol Cell Biol Lab, London WC1E 6BT, England
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
Single-molecule localization; Hardware; sCMOS; Homogenization; REFLECTION FLUORESCENCE MICROSCOPY; OPTICAL RECONSTRUCTION MICROSCOPY; SUPERRESOLUTION MICROSCOPY; DIFFRACTION-LIMIT; RESOLUTION LIMIT; LOCALIZATION; ILLUMINATION; NANOSCOPY; FLUOROPHORES; TRACKING;
D O I
10.1016/j.ymeth.2015.06.004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single Molecule Localization Microscopy (SMLM) techniques such as Photo-Activation Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) enable fluorescence microscopy super-resolution: the overcoming of the resolution barrier imposed by the diffraction of light. These techniques are based on acquiring hundreds or thousands of images of single molecules, locating them and reconstructing a higher-resolution image from the high-precision localizations. These methods generally imply a considerable trade-off between imaging speed and resolution, limiting their applicability to high-throughput workflows. Recent advancements in scientific Complementary Metal-Oxide Semiconductor (sCMOS) camera sensors and localization algorithms reduce the temporal requirements for SMLM, pushing it toward high-throughput microscopy. Here we outline the decisions researchers face when considering how to adapt hardware on a new system for sCMOS sensors with high-throughput in mind. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 121
页数:13
相关论文
共 88 条
  • [61] Ovesny M., 2014, Bioinformatics
  • [62] Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function
    Pavani, Sri Rama Prasanna
    Thompson, Michael A.
    Biteen, Julie S.
    Lord, Samuel J.
    Liu, Na
    Twieg, Robert J.
    Piestun, Rafael
    Moerner, W. E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (09) : 2995 - 2999
  • [63] Pawley J., 2005, Handbook of Biological Confocal Microscopy, V3rd
  • [64] Pedrotti Frank L., 1992, INTRO OPTICS
  • [65] Frontiers in fluorescence microscopy
    Rino, Jose
    Braga, Jose
    Henriques, Ricardo
    Carmo-Fonseca, Maria
    [J]. INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2009, 53 (8-10) : 1569 - 1579
  • [66] EM measurements define the dimensions of the "30-nm" chromatin fiber: Evidence for a compact, interdigitated structure
    Robinson, PJJ
    Fairall, L
    Huynh, VAT
    Rhodes, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (17) : 6506 - 6511
  • [67] Optics of high-performance electron microscopes
    Rose, H. H.
    [J]. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2008, 9 (01)
  • [68] Multiple Color Single Molecule TIRF Imaging and Tracking of MAPs and Motors
    Ross, Jennifer L.
    Dixit, Ram
    [J]. MICROTUBULES, IN VITRO: MICROTUBULES, IN VITRO, 2010, 95 : 521 - 542
  • [69] Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
    Rust, Michael J.
    Bates, Mark
    Zhuang, Xiaowei
    [J]. NATURE METHODS, 2006, 3 (10) : 793 - 795
  • [70] Structured microlens arrays for beam shaping
    Sales, TRM
    [J]. OPTICAL ENGINEERING, 2003, 42 (11) : 3084 - 3085