Conjugacy classes of subalgebras of the real sedenions

被引:7
作者
Chan, Kai-Cheong [1 ]
Dokovic, Dragomir Z. [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2006年 / 49卷 / 04期
关键词
D O I
10.4153/CMB-2006-048-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By applying the Cayley-Dickson process to the division algebra of real octonions, one obtains a 16-dimensional real algebra known as (real) sedenions. We denote this algebra by A(4). It is a flexible quadratic algebra (with unit element 1) but not a division algebra. We classify the subalgebras of A(4) up to conjugacy (i.e., up to the action of the automorphism group G of A(4)) with one exception: we leave aside the more complicated case of classifying the quaternion subalgebras. Any nonzero subalgebra contains I and we show that there are no proper subalgebras of dimension 5, 7 or > 8. The proper non-division subalgebras have dimensions 3, 6 and 8. We show that in each of these dimensions there is exactly one conjugacy class of such subalgebras. There are infinitely many conjugacy classes of subalgebras in dimensions 2 and 4, but only 4 conjugacy classes in dimension 8.
引用
收藏
页码:492 / 507
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 1981, MATH LECT NOTE SERIE
[2]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[3]  
Bott R., 1958, B AM MATH SOC, V64, P87, DOI [DOI 10.1090/S0002-9904-1958-10166-4, 10.1090/S0002-9904-1958-10166-4]
[4]   ON GENERALIZED CAYLEY-DICKSON ALGEBRAS [J].
BROWN, RB .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 20 (03) :415-&
[5]  
CHAN KC, 2004, THESIS U WATERLOO
[6]   ON AUTOMORPHISMS AND DERIVATIONS OF CAYLEY DICKSON ALGEBRAS [J].
EAKIN, P ;
SATHAYE, A .
JOURNAL OF ALGEBRA, 1990, 129 (02) :263-278
[7]  
JACOBSON N, 1958, REND CIRC MAT PALERM, V7, P1
[9]  
KHALIL SH, 1997, B SOC SCI LETT LO RD, V24, P117
[10]   Born-infeld Lagrangian using Cayley-Dickson algebras [J].
Kuwata, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (10) :1525-1548