2D Intermediate Suppression for Efficient Ruddlesden-Popper (RP) Phase Lead-Free Perovskite Solar Cells

被引:117
|
作者
Qiu, Jian [1 ,2 ]
Xia, Yingdong [1 ,2 ]
Zheng, Yiting [1 ,2 ]
Hui, Wei [1 ,2 ]
Gu, Hao [1 ,2 ]
Yuan, Wenbo [1 ,2 ]
Yu, Hui [1 ,2 ]
Chao, Lingfeng [1 ,2 ]
Niu, Tingting [1 ,2 ]
Yang, Yingguo [3 ]
Gao, Xingyu [3 ]
Chen, Yonghua [1 ,2 ,4 ]
Huang, Wei [1 ,2 ,4 ,5 ,6 ]
机构
[1] Nanjing Tech Univ NanjingTech, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect KLOFE, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China
[2] Nanjing Tech Univ NanjingTech, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, IAM, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[4] NPU, SIFE, 127 West Youyi Rd, Xian 710072, Shaanxi, Peoples R China
[5] Nanjing Univ Posts & Telecommun, KLOEID, 9 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
[6] Nanjing Univ Posts & Telecommun, IAM, 9 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
关键词
HALIDE PEROVSKITES; CRYSTALLIZATION; STABILITY; FILMS;
D O I
10.1021/acsenergylett.9b00954
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
2D Ruddlesden-Popper (2DRP) tin (Sn) perovskite solar cells (PSCs) play an irreplaceable role in advancing the commercialization of perovskite-based photovoltaic devices due to their low toxicity and improved stability. However, the efficiency of 2DRP Sn PSCs has not made a breakthrough owing to incompletely oriented crystal growth and poor film morphology, which is limited by a complex and uncontrollable crystallization process. Here, we first introduce the mixed spacer organic cations [n-butylamine (BA) and phenylethylamine (PEA)] in 2DRP Sn perovskite to control the crystallization process. We find that when the BA(+) and PEA(+) co-work to form [(BA(0.5)PEA(0.5))(2)FA(3)Sn(4)I(13)] 2DRP perovskites, the intermediate phase impeding the homogeneous and ordered nucleation of the crystal is suppressed effectively, thus enabling a high-quality film morphology and improved crystal orientation. Benefitting from it, the power conversion efficiency (PCE) is improved to 8.82%, which is the highest one among the 2DRP Sn PSCs as far as we known.
引用
收藏
页码:1513 / 1520
页数:15
相关论文
共 50 条
  • [41] Origin and Suppression of the Graded Phase Distribution in Ruddlesden-Popper Perovskite Films for Photovoltaic Application
    Mao, Peng
    Zhuang, Jing
    Wei, Yuanzhi
    Chen, Ningli
    Luan, Yigang
    Wang, Jizheng
    SOLAR RRL, 2019, 3 (04)
  • [42] The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells
    Liu, Rui
    Yu, Yue
    Deng, Lu
    Xu, Maoxia
    Ren, Haorong
    Luo, Wenjie
    Cai, Xudong
    Li, Zhenyu
    Chen, Jingyu
    Yu, Hua
    CHINESE CHEMICAL LETTERS, 2024, 35 (12)
  • [43] 2D Ruddlesden-Popper Perovskites Microring Laser Array
    Zhang, Haihua
    Liao, Qing
    Wu, Yishi
    Zhang, Zhaoyi
    Gao, Qinggang
    Liu, Peng
    Li, Meili
    Yao, Jiannian
    Fu, Hongbing
    ADVANCED MATERIALS, 2018, 30 (15)
  • [44] Magnetism in a 2D Hybrid Ruddlesden-Popper Perovskite through Charge Redistribution Driven by an Organic Functional Spacer
    Tofanello, A.
    Freitas, A. L. M.
    de Queiroz, T. B.
    Bonadio, A.
    Martinho, H.
    Souza, J. A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (06): : 1406 - 1415
  • [45] Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX3 to 2D Ruddlesden-Popper perovskite absorbers
    Roghabadi, Farzaneh Arabpour
    Alidaei, Maryam
    Mousavi, Seyede Maryam
    Ashjari, Tahereh
    Tehrani, Ali Shokrolahzadeh
    Ahmadi, Vahid
    Sadrameli, Seyed Mojtaba
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (11) : 5898 - 5933
  • [46] Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application
    Zheng, Yiting
    Niu, Tingting
    Ran, Xueqin
    Qiu, Jian
    Li, Bixin
    Xia, Yingdong
    Chen, Yonghua
    Huang, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (23) : 13860 - 13872
  • [47] Bi3+ doped 2D Ruddlesden-Popper organic lead halide perovskites
    Lyu, Feiyi
    Zheng, Xiaoqi
    Wang, Yingqiao
    Shi, Ruowen
    Yang, Jianli
    Li, Ziyue
    Yu, Jiase
    Lin, Bo-Lin
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (26) : 15627 - 15632
  • [48] Nucleation and Crystallization in 2D Ruddlesden-Popper Perovskites using Formamidinium-based Organic Semiconductor Spacers for Efficient Solar Cells
    Wang, Rui
    Dong, Xiyue
    Ling, Qin
    Hu, Ziyang
    Gao, Yuping
    Chen, Yu
    Liu, Yongsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (50)
  • [49] Passivation of Low-Dimensional Quasi-2D Ruddlesden-Popper Perovskite Solar Cells with Ionic Liquid
    Sharma, Bhumika
    Pawar, Vani
    Patil, Satish
    Avasthi, Sushobhan
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (21): : 10163 - 10170
  • [50] Efficient and Stable Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells Enabled by Reducing Tunnel Barrier
    Chao, Lingfeng
    Niu, Tingting
    Xia, Yingdong
    Ran, Xueqin
    Chen, Yonghua
    Huang, Wei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (06) : 1173 - 1179