Global strong solution to compressible Navier-Stokes equations with density dependent viscosity and temperature dependent heat conductivity

被引:30
作者
Duan, Ran [1 ]
Guo, Ai [2 ]
Zhu, Changjiang [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible Navier-Stokes equations; Density dependent viscosity; Temperature dependent heat; conductivity; Stress-free; Thermally insulated; BOUNDARY-VALUE-PROBLEMS; ONE-DIMENSIONAL MOTION; SMOOTH SOLUTIONS; GAS;
D O I
10.1016/j.jde.2017.01.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain existence and uniqueness of global strong solution to one-dimensional compressible Navier-Stokes equations for ideal polytropic gas flow, with density dependent viscosity and temperature dependent heat conductivity under stress-free and thermally insulated boundary conditions. Here we assume viscosity coefficient mu(p) = 1 + p(alpha) and heat conductivity coefficient kappa(theta) = theta(beta) for all alpha is an element of E [0, infinity) and beta is an element of(0, +infinity). (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:4314 / 4335
页数:22
相关论文
共 29 条
[1]   SOLVABILITY IN THE LARGE OF A SYSTEM OF EQUATIONS OF THE ONE-DIMENSIONAL MOTION OF AN INHOMOGENEOUS VISCOUS HEAT-CONDUCTING GAS [J].
AMOSOV, AA ;
ZLOTNIK, AA .
MATHEMATICAL NOTES, 1992, 52 (1-2) :753-763
[2]  
[Anonymous], 1998, J PART DIFF EQS
[3]  
ANTONTSEV SN, 1990, BOUNDARY VALUE PROBL
[4]  
Cercignani Carlo, 1994, Applied Mathematical Sciences, V106
[5]  
Chapman S., 1990, Cambridge Mathematical Library, V3
[7]   GLOBAL SMOOTH THERMOMECHANICAL PROCESSES IN ONE-DIMENSIONAL NON-LINEAR THERMOVISCOELASTICITY [J].
DAFERMOS, CM ;
HSIAO, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (05) :435-454
[8]   ONE-DIMENSIONAL COMPRESSIBLE FLOW WITH TEMPERATURE DEPENDENT TRANSPORT COEFFICIENTS [J].
Jenssen, Helge Kristian ;
Karper, Trygve Klovning .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (02) :904-930
[9]   ON INITIAL-BOUNDARY VALUE-PROBLEMS FOR A VISCOUS, HEAT-CONDUCTING, ONE-DIMENSIONAL REAL-GAS [J].
JIANG, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 110 (02) :157-181
[10]   Global smooth solutions of the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity [J].
Jiang, S .
MATHEMATISCHE NACHRICHTEN, 1998, 190 :169-183