Global strong solution to compressible Navier-Stokes equations with density dependent viscosity and temperature dependent heat conductivity

被引:29
|
作者
Duan, Ran [1 ]
Guo, Ai [2 ]
Zhu, Changjiang [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible Navier-Stokes equations; Density dependent viscosity; Temperature dependent heat; conductivity; Stress-free; Thermally insulated; BOUNDARY-VALUE-PROBLEMS; ONE-DIMENSIONAL MOTION; SMOOTH SOLUTIONS; GAS;
D O I
10.1016/j.jde.2017.01.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain existence and uniqueness of global strong solution to one-dimensional compressible Navier-Stokes equations for ideal polytropic gas flow, with density dependent viscosity and temperature dependent heat conductivity under stress-free and thermally insulated boundary conditions. Here we assume viscosity coefficient mu(p) = 1 + p(alpha) and heat conductivity coefficient kappa(theta) = theta(beta) for all alpha is an element of E [0, infinity) and beta is an element of(0, +infinity). (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:4314 / 4335
页数:22
相关论文
共 50 条