Mechanistic investigation of rapid catalytic degradation of tetracycline using CoFe2O4@MoS2 by activation of peroxymonosulfate

被引:98
作者
Peng, Xiaoming [1 ]
Yang, Zhanhong [1 ]
Hu, Fengping [1 ]
Tan, Chaoqun [2 ]
Pan, Qianyu [1 ]
Dai, Hongling [1 ]
机构
[1] East China Jiaotong Univ, Sch Civil Engn & Architecture, Nanchang, Jiangxi, Peoples R China
[2] Southeast Univ, Dept Municipal Engn, Nanjing, Peoples R China
关键词
Peroxymonosulfate; CoFe2O4@MoS2; Tetracycline degradation; Intermediates analysis; BISPHENOL-A; REMOVAL; SYSTEM; EFFICIENT; POLLUTION; KINETICS; MOS2;
D O I
10.1016/j.seppur.2022.120525
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A one-pot hydrothermal synthesis strategy was used to successfully prepare a series of Fenton-like catalysts based on the loading of CoFe2O4 nanoparticles on the surface of MoS2. By activating peroxymonosulfate (PMS), it was found that the as-prepared CoFe2O4@MoS2 catalysts with different mass ratios of CoFe2O4 and MoS2 all exhibit superior catalytic ability for tetracycline (TC) degradation. The degradation efficiency of TC was greatly improved because of the synergetic effect of the highly active Mo(IV) sites and unsaturated S on the surface of the catalyst, which could efficiently accelerate the circulation of Fe(III) to Fe(II) and significantly accelerate the adsorption and decomposition of PMS. The EPR and quenching experimental results revealed that O-1(2) was detected as the main active species for TC degradation in the CoFe2O4@MoS2/PMS system. Furthermore, the possible TC degradation pathways wase proposed and the toxicity estimation of intermediates was evaluated by Toxicity QSAR prediction. Our work provides a new strategy to fabricate transition-metal-based catalysts for more efficiency in PMS activation.
引用
收藏
页数:12
相关论文
共 64 条
[1]   Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process [J].
Ao, Xiuwei ;
Liu, Wenjun ;
Sun, Wenjun ;
Yang, Chao ;
Lu, Zedong ;
Li, Chen .
CHEMOSPHERE, 2018, 212 :365-375
[2]   Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine [J].
Bai, Rui ;
Yan, Weifu ;
Xiao, Yong ;
Wang, Siqi ;
Tian, Xiaochun ;
Li, Junpeng ;
Xiao, Xiaofeng ;
Lu, Xiaoquan ;
Zhao, Feng .
CHEMICAL ENGINEERING JOURNAL, 2020, 397
[3]   Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water [J].
Cai, Chun ;
Zhang, Hui ;
Zhong, Xing ;
Hou, Liwei .
JOURNAL OF HAZARDOUS MATERIALS, 2015, 283 :70-79
[4]   Pyrrolic N-rich biochar without exogenous nitrogen doping as a functional material for bisphenol A removal: Performance and mechanism [J].
Cai, Shu ;
Zhang, Qi ;
Wang, Ziqian ;
Hua, Sheng ;
Ding, Dahu ;
Cai, Tianming ;
Zhang, Ruihong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 291
[5]   In-situ pyrolysis of Enteromorpha as carbocatalyst for catalytic removal of organic contaminants: Considering the intrinsic N/Fe in Enteromorpha and non-radical reaction [J].
Chen, Cheng ;
Ma, Tengfei ;
Shang, Yanan ;
Gao, Baoyu ;
Jin, Bo ;
Dan, Hongbing ;
Li, Qian ;
Yue, Qinyan ;
Li, Yanwei ;
Wang, Yu ;
Xu, Xing .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 250 :382-395
[6]   Construction of piezoelectric BaTiO3/MoS2 heterojunction for boosting piezo-activation of peroxymonosulfate [J].
Chen, Yanxi ;
Lan, Shenyu ;
Zhu, Mingshan .
CHINESE CHEMICAL LETTERS, 2021, 32 (06) :2052-2056
[7]   Aqueous tetracycline degradation by H2O2 alone: Removal and transformation pathway [J].
Chen, Yao-Yao ;
Ma, Yu-Long ;
Yang, Jin ;
Wang, Li-Qiong ;
Lv, Jun-Min ;
Ren, Cui-Juan .
CHEMICAL ENGINEERING JOURNAL, 2017, 307 :15-23
[8]   Iodometric spectrophotometric determination of peroxydisulfate in hydroxylamine-involved AOPs: 15 min or 15 s for oxidative coloration? [J].
Dai, Lin ;
Xu, Jiaxin ;
Lin, Jinbin ;
Wu, Lingbin ;
Cai, Huahua ;
Zou, Jing ;
Ma, Jun .
CHEMOSPHERE, 2021, 272
[9]   Antibiotic pollution in surface fresh waters: Occurrence and effects [J].
Danner, Marie-Claire ;
Robertson, Anne ;
Behrends, Volker ;
Reiss, Julia .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 664 :793-804
[10]   Synergistic Adsorption and Oxidation of Ciprofloxacin by Biochar Derived from Metal-Enriched Phytoremediation Plants: Experimental and Computational Insights [J].
Ding, Dahu ;
Zhou, Liang ;
Kang, Fuxing ;
Yang, Shengjiong ;
Chen, Rongzhi ;
Cai, Tianming ;
Duan, Xiaoguang ;
Wang, Shaobin .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (48) :53788-53798