Exceptional Meixner and Laguerre orthogonal polynomials

被引:56
作者
Duran, Antonio J. [1 ]
机构
[1] Univ Seville, Dept Anal Matemat, Apdo POB 1160, E-41080 Seville, Spain
关键词
Orthogonal polynomials; Exceptional orthogonal polynomial; Difference operators; Differential operators; Meixner polynomials; Krawtchouk polynomials; Laguerre polynomials; HIGHER-ORDER DIFFERENCE; EQUATIONS; DETERMINANTS; SYSTEMS;
D O I
10.1016/j.jat.2014.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Casorati determinants of Meixner polynomials (m(n)(a,c))(n), we construct for each pair F = (F-1, F-2) of finite sets of positive integers a sequence of polynomials m(n)(a,c;F), n is an element of sigma(F), which are eigenfunctions of a second order difference operator, where sigma(F) is certain infinite set of normegative integers, sigma(F) not subset of N. When c and F satisfy a suitable admissibility condition, we prove that the polynomials m(n)(a,c;F), n is an element of sigma(F), are actually exceptional Meixner polynomials; that is, in addition, they are orthogonal and complete with respect to a positive measure. By passing to the limit, we transform the Casorati determinant of Meixner polynomials into a Wronskian type determinant of Laguerre polynomials (L-n(alpha))(n). Under the admissibility conditions for F and alpha, these Wronskian type determinants turn out to be exceptional Laguerre polynomials. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:176 / 208
页数:33
相关论文
共 42 条
[1]   A MODIFICATION OF CRUMS METHOD [J].
ADLER, VE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 101 (03) :1381-1386
[2]  
Akhiezer N. I., 1965, CLASSICAL MOMENT PRO
[3]  
Atkinson FV., 1964, Discrete and Continuous Boundary Value Problems
[4]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[5]  
Chihara Theodore S, 2011, An introduction to orthogonal polynomials
[6]  
Christoffel EB., 1858, Crelles Journal, V55, P61
[7]   Equidistant spectra of anharmonic oscillators [J].
Dubov, S. Yu. ;
Eleonskii, V. M. ;
Kulagin, N. E. .
CHAOS, 1994, 4 (01) :47-53
[8]  
DUBOV SY, 1992, ZH EKSP TEOR FIZ+, V102, P814
[9]  
Duran A.J., 2014, CONSTR APPR IN PRESS
[10]   Exceptional Charlier and Hermite orthogonal polynomials [J].
Duran, Antonio J. .
JOURNAL OF APPROXIMATION THEORY, 2014, 182 :29-58