A molecular dynamics investigation into deformation mechanism of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates

被引:21
作者
Feng, Hui [1 ]
Cui, Shiyong [1 ]
Chen, Haotian [1 ]
Song, Xinhua [1 ,3 ]
Fang, Qihong [1 ]
Li, Jia [1 ]
Liu, Bin [2 ]
Liu, Feng [2 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[3] Zhangjiajie Aviat Ind Vocat Tech Coll, Zhangjiajie 427000, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy alloy; Crystalline/crystalline nanolaminate; Deformation behaviour; Strengthening mechanism; Molecular dynamics; SCALE-DEPENDENT DEFORMATION; TWIN BOUNDARY MIGRATION; PHASE-TRANSFORMATION; PLASTIC-DEFORMATION; THERMAL-STABILITY; FRACTURE; BEHAVIOR; DUCTILE; STRAIN; STRENGTH;
D O I
10.1016/j.surfcoat.2020.126325
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-entropy alloys (HEA) present high hardness, but low tensile ductility. Here, deformation behaviour of the nanotwinned Cu/HEA FeCoCrNi nanolaminates prepared by the previous experiment is investigated using atomic simulations. The result shows the nucleation and glide of lattice dislocations in the Cu layers dominate the initial plastic deformation in Cu/HEA multilayers, and these gliding dislocations are deposited at the twinning boundary. With the increasing strain, the dislocations are activated in HEA layer, and deposited in the Cu-HEA interface, finally facilitate slip transmission from the HEA layer to the Cu layer. The flow stress decreases and keeps a constant value with increasing nanotwinned Cu/HEA FeCoCrNi layer number, which depends upon the slip transmission and interfacial dislocation to govern strain hardening.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Dislocation-based deformation mechanisms in metallic nanolaminates [J].
Anderson, PM ;
Foecke, T ;
Hazzledine, PM .
MRS BULLETIN, 1999, 24 (02) :27-33
[2]   Study of the plastic deformation mechanism of TRIP-TWIP high entropy alloys at the atomic level [J].
Bahramyan, Mehran ;
Mousavian, Reza Taherzadeh ;
Brabazon, Dermot .
INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 127
[3]   Thermal stability and oxidation resistance of FeCrxCoNiB high-entropy alloys coatings by laser cladding [J].
Chang, Fa ;
Cai, Bingjie ;
Zhang, Chong ;
Huang, Biao ;
Li, Shuai ;
Dai, Pinqiang .
SURFACE & COATINGS TECHNOLOGY, 2019, 359 :132-140
[4]   Sulfurizing of CoCrFeNiSi0.4 and CoCrFeMoNi high entropy alloys fabricated by laser cladding [J].
Cui, Gang ;
Han, Bin ;
Yang, Ying ;
Li, Meiyan ;
Li, Jianlong .
SURFACE & COATINGS TECHNOLOGY, 2020, 381 (381)
[5]   Strength and plastic deformation behavior of nanolaminate composites with pre-existing dislocations [J].
Damadam, Mohsen ;
Shao, Shuai ;
Salehinia, Iman ;
Mastorakos, Ioannis ;
Ayoub, Georges ;
Zbib, Hussein M. .
COMPUTATIONAL MATERIALS SCIENCE, 2017, 138 :42-48
[6]   Tuning element distribution, structure and properties by composition in high-entropy alloys [J].
Ding, Qingqing ;
Zhang, Yin ;
Chen, Xiao ;
Fu, Xiaoqian ;
Chen, Dengke ;
Chen, Sijing ;
Gu, Lin ;
Wei, Fei ;
Bei, Hongbin ;
Gao, Yanfei ;
Wen, Minru ;
Li, Jixue ;
Zhang, Ze ;
Zhu, Ting ;
Ritchie, Robert O. ;
Yu, Qian .
NATURE, 2019, 574 (7777) :223-+
[7]   Outstanding radiation resistance of tungsten-based high-entropy alloys [J].
El-Atwani, O. ;
Li, N. ;
Li, M. ;
Devaraj, A. ;
Baldwin, J. K. S. ;
Schneider, M. M. ;
Sobieraj, D. ;
Wrobel, J. S. ;
Nguyen-Manh, D. ;
Maloy, S. A. ;
Martinez, E. .
SCIENCE ADVANCES, 2019, 5 (03)
[8]  
Faken D., 1994, Computational Materials Science, V2, P279, DOI 10.1016/0927-0256(94)90109-0
[9]   Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys [J].
Fang, Qihong ;
Chen, Yang ;
Li, Jia ;
Jiang, Chao ;
Liu, Bin ;
Liu, Yong ;
Liaw, Peter K. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 114 :161-173
[10]   Model interatomic potentials and lattice strain in a high-entropy alloy [J].
Farkas, Diana ;
Caro, Alfredo .
JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) :3218-3225