Dynamics of Hepatitis C Virus ( HCV) RNA-dependent RNA Polymerase NS5B in Complex with RNA

被引:20
|
作者
Karam, Pierre [1 ]
Powdrill, Megan H. [3 ]
Liu, Hsiao-Wei [1 ]
Vasquez, Colins [3 ]
Mah, Wayne [1 ]
Bernatchez, Jean [3 ]
Goette, Matthias [1 ,4 ,5 ]
Cosa, Gonzalo [1 ,2 ]
机构
[1] McGill Univ, Dept Chem, Montreal, PQ H3A 2K6, Canada
[2] McGill Univ, Ctr Self Assembled Chem Struct CSACS CRMAA, Montreal, PQ H3A 2K6, Canada
[3] McGill Univ, Dept Microbiol & Immunol, Montreal, PQ H3A 2B4, Canada
[4] McGill Univ, Dept Biochem, Montreal, PQ H3G 1Y6, Canada
[5] McGill Univ, Div Expt Med, Dept Med, Montreal, PQ H3A 1A3, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Antiviral Agents; Drug Resistance; Fluorescence Resonance Energy Transfer (FRET); Hepatitis c Virus; RNA Polymerase; DE-NOVO INITIATION; HIV REVERSE-TRANSCRIPTASE; SINGLE-STRANDED-DNA; FLUORESCENCE SPECTROSCOPY; CRYSTAL-STRUCTURE; MOLECULE; INHIBITORS; BINDING; IDENTIFICATION; SITE;
D O I
10.1074/jbc.M113.529743
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The dynamics associated with RNA binding by the hepatitis C virus (HCV) polymerase remain elusive. Results: Single molecule experiments reveal changing populations of binary RNA-enzyme complexes. Conclusion: Rapid enzyme conformational changes facilitate sliding/wrapping of the polymerase along its RNA substrate. Significance: This study provides novel insight into mechanisms associated with viral replication and its inhibition. The hepatitis C virus (HCV) non-structural protein 5B (NS5B) is an RNA-dependent RNA polymerase that is essentially required for viral replication. Although previous studies revealed important properties of static NS5B-RNA complexes, the nature and relevance of dynamic interactions have yet to be elucidated. Here, we devised a single molecule Forster Resonance Energy Transfer (SM-FRET) assay to monitor temporal changes upon binding of NS5B to surface immobilized RNA templates. The data show enzyme association-dissociation events that occur within the time resolution of our setup as well as FRET-fluctuations in association with stable binary complexes that extend over prolonged periods of time. Fluctuations are shown to be dependent on the length of the RNA substrate, and enzyme concentration. Mutations in close proximity to the template entrance (K98E, K100E), and in the center of the RNA binding channel (R394E), reduce both the population of RNA-bound enzyme and the fluctuations associated to the binary complex. Similar observations are reported with an allosteric nonnucleoside NS5B inhibitor. Our assay enables for the first time the visualization of association-dissociation events of HCV-NS5B with RNA, and also the direct monitoring of the interaction between HCV NS5B, its RNA template, and finger loop inhibitors. We observe both a remarkably low dissociation rate for wild type HCV NS5B, and a highly dynamic enzyme-RNA binary complex. These results provide a plausible mechanism for formation of a productive binary NS5B-RNA complex, here NS5B slides along the RNA template facilitating positioning of its 3 terminus at the enzyme active site.
引用
收藏
页码:14399 / 14411
页数:13
相关论文
共 50 条
  • [22] Classical swine fever virus NS3 enhances RNA-dependent RNA polymerase activity by binding to NS5B
    Wang, Ping
    Wang, Yujing
    Zhao, Yu
    Zhu, Zailing
    Yu, Jialin
    Wan, Lingzhu
    Chen, Jun
    Xiao, Ming
    VIRUS RESEARCH, 2010, 148 (1-2) : 17 - 23
  • [23] Azapteridine inhibitors of hepatitis C virus RNA-dependent RNA polymerase
    Middleton, T.
    Lim, H. B.
    Montgomery, D.
    Rockway, T.
    Liu, D.
    Klein, L.
    Qin, W.
    Harlan, J. E.
    Kati, W. M.
    Molla, A.
    LETTERS IN DRUG DESIGN & DISCOVERY, 2007, 4 (01) : 1 - 8
  • [24] Intracellular hepatitis C virus RNA-dependent RNA polymerase activity
    DeMarini, DJ
    Johnston, VK
    Konduri, M
    Gutshall, LL
    Sarisky, RT
    JOURNAL OF VIROLOGICAL METHODS, 2003, 113 (01) : 65 - 68
  • [25] Identification and Analysis of Novel Inhibitors against NS3 Helicase and NS5B RNA-Dependent RNA Polymerase from Hepatitis C Virus 1b (Con1)
    Yang, Na
    Sun, Chaomin
    Zhang, Lixin
    Liu, Jianguo
    Song, Fuhang
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [26] Inhibition of RNA binding to hepatitis C virus RNA-dependent RNA polymerase: a new mechanism for antiviral intervention
    Ahmed-Belkacem, Abdelhakim
    Guichou, Jean-Francois
    Brillet, Rozenn
    Ahnou, Nazim
    Hernandez, Eva
    Pallier, Coralie
    Pawlotsky, Jean-Michel
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : 9399 - 9409
  • [27] Cell Penetrable Humanized-VH/VHH That Inhibit RNA Dependent RNA Polymerase (NS5B) of HCV
    Thueng-in, Kanyarat
    Thanongsaksrikul, Jeeraphong
    Srimanote, Potjanee
    Bangphoomi, Kunan
    Poungpair, Ornnuthchar
    Maneewatch, Santi
    Choowongkomon, Kiattawee
    Chaicumpa, Wanpen
    PLOS ONE, 2012, 7 (11):
  • [28] Identification and functional characterization of the nascent RNA contacting residues of the hepatitis C virus RNA-dependent RNA polymerase
    Vaughan, Robert
    Fan, Baochang
    You, Jin-Sam
    Kao, C. Cheng
    RNA, 2012, 18 (08) : 1541 - 1552
  • [29] Regulation of De Novo-Initiated RNA Synthesis in Hepatitis C Virus RNA-Dependent RNA Polymerase by Intermolecular Interactions
    Chinnaswamy, S.
    Murali, A.
    Li, P.
    Fujisaki, K.
    Kao, C. C.
    JOURNAL OF VIROLOGY, 2010, 84 (12) : 5923 - 5935
  • [30] Discovery of novel tricyclic indole derived inhibitors of HCV NS5B RNA dependent RNA polymerase
    Venkatraman, Srikanth
    Velazquez, Francisco
    Gavalas, Stephen
    Wu, Wanli
    Chen, Kevin X.
    Nair, Anilkumar G.
    Bennett, Frank
    Huang, Yuhua
    Pinto, Patrick
    Jiang, Yueheng
    Selyutin, Oleg
    Vibulbhan, Bancha
    Zeng, Qingbei
    Lesburg, Charles
    Duca, Jose
    Huang, Hsueh-Cheng
    Agrawal, Sony
    Jiang, Chuan-kui
    Ferrari, Eric
    Li, Cheng
    Kozlowski, Joseph
    Rosenblum, Stuart
    Shih, Neng-Yang
    Njoroge, F. George
    BIOORGANIC & MEDICINAL CHEMISTRY, 2013, 21 (07) : 2007 - 2017