Moore-Penrose inverse of the incidence matrix of a distance regular graph

被引:9
作者
Azimi, A. [1 ]
Bapat, R. B. [2 ]
机构
[1] Univ Neyshabur, Dept Math, Neyshabur, Iran
[2] Indian Stat Inst, New Delhi 110016, India
关键词
Moore-Penrose inverse; Distance regular graph; Distance transitive graph; RESISTANCE DISTANCES; LAPLACIAN;
D O I
10.1016/j.laa.2018.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma be a graph with n vertices, where each edge is given an orientation and let Q be the vertex-edge incidence matrix. We obtain a formula for the Moore-Penrose inverse of Q, when Gamma is a distance regular graph. The formula is illustrated by examples. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:92 / 103
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 1979, Generalized inverses of linear transformations
[2]  
[Anonymous], 1920, Bull. Amer. Math. Soc., DOI [10.1090/S0002-9904-1920-03322-7, DOI 10.1090/S0002-9904-1920-03322-7]
[3]  
[Anonymous], 2014, GRAPHS MATRICES
[4]  
[Anonymous], 2001, ALGEBRAIC GRAPH THEO
[5]  
[Anonymous], 1967, P 1 ASILOMAR C CIRCU
[6]   RESISTANCE DISTANCE IN WHEELS AND FANS [J].
Bapat, R. B. ;
Gupta, Somit .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2010, 41 (01) :1-13
[7]  
Bapat R.B., 1997, Linear Multilinear Algebra, V42, P159, DOI [10.1080/03081089708818496, DOI 10.1080/03081089708818496]
[8]  
Ben-Israel Adi, 1974, GEN INVERSE THEORY A
[9]  
Biggs N.L., 1974, Algebraic Graph Theory
[10]   The Moore-Penrose inverse of the normalized graph Laplacian [J].
Bozzo, Enrico .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) :3038-3043