Frataxin, iron-sulfur clusters, heme, ROS, and aging

被引:85
作者
Napoli, Eleonora
Taroni, Franco
Cortopassi, Gino A.
机构
[1] Univ Calif Davis, Dept Mol Biosci, Davis, CA 95616 USA
[2] Ist Neurol Nacl C Besta, Div Biochem & Genet, Milan, Italy
关键词
D O I
10.1089/ars.2006.8.506
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A deficiency in mitochondrial frataxin causes an increased generation of mitochondrial reactive oxygen species (ROS), which may contribute to the cell degenerative features of Friedreich's ataxia. In this work the authors demonstrate mitochondrial iron-sulfur cluster (ISC) defects and mitochondrial heme defects, and suggest how both may contribute to increased mitochondrial ROS in lymphoblasts from human patients. Mutant cells are deficient in the ISC-requiring mitochondrial enzymes aconitase and succinate dehydrogenase, but not in the non-ISC mitochondrial enzyme citrate synthase; also, the mitochondrial iron-sulfur scaffold protein IscU2 co-immunoprecipitates with frataxin in vivo. Presumably as a consequence of the iron-sulfur cluster defect, cytochrome c heme is deficient in mutants, as well as heme-dependent Complex IV. Mitochondrial superoxide is elevated in mutants, which may be a consequence of cytochrome c deficiency. Hydrogen peroxide, glutathione peroxidase activity, and oxidized glutathione (GSSG) are each elevated in mutants, consistent with activation of the glutathione peroxidase pathway. Mutant status blunted the effects of Complex III and IV inhibitors, but not a Complex I inhibitor, on superoxide production. This suggests that heme defects late in the electron transport chain of mutants are responsible for increased mutant superoxide. The impact of ISC and heme defects on ROS production with age are discussed.
引用
收藏
页码:506 / 516
页数:11
相关论文
共 66 条
[1]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[2]   Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging [J].
Atamna, H ;
Killilea, DW ;
Killilea, AN ;
Ames, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (23) :14807-14812
[3]   Heme deficiency selectively interrupts assembly of mitochondrial complex IV in human fibroblasts - Relevance to aging [J].
Atamna, H ;
Liu, JK ;
Ames, BN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (51) :48410-48416
[4]   Somatic sequence variation at the Friedreich ataxia locus includes complete contraction of the expanded GAA triplet repeat, significant length variation in serially passaged lymphoblasts and enhanced mutagenesis in the flanking sequence [J].
Bidichandani, SI ;
Purandare, SM ;
Taylor, EE ;
Gumin, G ;
Machkhas, H ;
Harati, Y ;
Gibbs, RA ;
Ashizawa, T ;
Patel, PI .
HUMAN MOLECULAR GENETICS, 1999, 8 (13) :2425-2436
[5]   Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues [J].
Birch-Machin, MA ;
Turnbull, DM .
METHODS IN CELL BIOLOGY, VOL 65: MITOCHONDRIA, 2001, 65 :97-117
[6]   Mitochondrial intermediate peptidase and the yeast frataxin homolog together maintain mitochondrial iron homeostasis in Saccharomyces cerevisiae [J].
Branda, SS ;
Yang, ZY ;
Chew, A ;
Isaya, G .
HUMAN MOLECULAR GENETICS, 1999, 8 (06) :1099-1110
[7]   Oxygen tolerance and coupling of mitochondrial electron transport [J].
Campian, JL ;
Qian, MQ ;
Gao, XH ;
Eaton, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (45) :46580-46587
[8]   Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes [J].
Campuzano, V ;
Montermini, L ;
Lutz, Y ;
Cova, L ;
Hindelang, C ;
Jiralerspong, S ;
Trottier, Y ;
Kish, SJ ;
Faucheux, B ;
Trouillas, P ;
Authier, FJ ;
Durr, A ;
Mandel, JL ;
Vescovi, A ;
Pandolfo, M ;
Koenig, M .
HUMAN MOLECULAR GENETICS, 1997, 6 (11) :1771-1780
[9]   Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae [J].
Cavadini, P ;
Gellera, C ;
Patel, PI ;
Isaya, G .
HUMAN MOLECULAR GENETICS, 2000, 9 (17) :2523-2530
[10]   Disabled early recruitment of antioxidant defenses in Friedreich's ataxia [J].
Chantrel-Groussard, K ;
Geromel, V ;
Puccio, H ;
Koenig, M ;
Munnich, A ;
Rötig, A ;
Rustin, P .
HUMAN MOLECULAR GENETICS, 2001, 10 (19) :2061-2067