Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3•(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8)

被引:16
作者
Chen Lai [1 ]
Chen Shi [1 ,2 ]
Hu Dao-Zhong [3 ]
Su Yue-Feng [1 ,2 ]
Li Wei-Kang [1 ]
Wang Zhao [1 ]
Bao Li-Ying [1 ,2 ]
Wu Feng [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Natl Dev Ctr Hitech Green Mat, Beijing 100081, Peoples R China
[3] China North Vehicle Res Inst, Beijing 100072, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Lithium-ion battery; Cathode; Li2MnO3; Crystal structure; Electrochemical performance; X-RAY-DIFFRACTION; ANOMALOUS CAPACITY; MANGANESE-OXIDE; HIGH-VOLTAGE; ELECTRODES; BATTERIES; MN; NANOCRYSTALLINE; BEHAVIOR; NI;
D O I
10.3866/PKU.WHXB201312252
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of lithium-rich cathode materials, xLi(2)MnO(3)center dot(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8), were successfully synthesized by a sol-gel method. X-ray diffraction, scanning electron microscopy, and electrochemical tests were used to investigate the crystal structure, morphology, and electrochemical performance of the as-synthesized materials, respectively. The results showed that the materials with higher Li2MnO3 content had higher initial discharge capacity but poorer cycle stability, while the materials with lower Li2MnO3 content showed lower discharge capacity but better cycle stability, and the spinel impurity phase was also found. Based on the data, the optimal electrochemical properties were obtained when x=0.5 in xLi(2)MnO(3)center dot (1-x)LiNi0.5Mn0.5O2. Moreover, the electrochemical properties were also worthy of attention when x=0.4, 0.6.
引用
收藏
页码:467 / 475
页数:9
相关论文
共 58 条
[51]   Mechanisms associated with the "Plateau" observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system [J].
Tran, N. ;
Croguennec, L. ;
Menetrier, M. ;
Weill, F. ;
Biensan, Ph. ;
Jordy, C. ;
Delmas, C. .
CHEMISTRY OF MATERIALS, 2008, 20 (15) :4815-4825
[52]   Nanoarchitecture Multi-Structural Cathode Materials for High Capacity Lithium Batteries [J].
Wang, Dapeng ;
Belharouak, Ilias ;
Zhou, Guangwen ;
Amine, Khalil .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) :1070-1075
[53]   Preparation and Characterization of xLi2MnO3•(1-x)Li[Ni1/3Mn1/3Co1/3]O2 Cathode Materials for Lithium-Ion Batteries [J].
Wang Zhao ;
Wu Feng ;
Su Yue-Feng ;
Bao Li-Ying ;
Chen Lai ;
Li Ning ;
Chen Shi .
ACTA PHYSICO-CHIMICA SINICA, 2012, 28 (04) :823-830
[54]   Electron diffraction study of the layered Liy(Ni0.425Mn0.425Co0.15)0.88O2 materials reintercalated after two different states of charge [J].
Weill, F. ;
Tran, N. ;
Martin, N. ;
Croguennec, L. ;
Delmas, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (08) :A194-A197
[55]   Lithium batteries and cathode materials [J].
Whittingham, MS .
CHEMICAL REVIEWS, 2004, 104 (10) :4271-4301
[56]  
Wu F., 2013, ADV MAT, V25
[57]   Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials? [J].
Wu, Feng ;
Li, Ning ;
Su, Yuefeng ;
Lu, Huaquan ;
Zhang, Linjing ;
An, Ran ;
Wang, Zhao ;
Bao, Liying ;
Chen, Shi .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (04) :1489-1497
[58]   Understanding the phenomenon of increasing capacity of layered 0.65Li[Li1/3Mn2/3]O2•0.35Li(Ni1/3Co1/3Mn1/3)O2 [J].
Yu, Lingyan ;
Qiu, Weihua ;
Lian, Fang ;
Huang, Jiayuan ;
Kang, Xiaoli .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 471 (1-2) :317-321