Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans

被引:107
作者
Wu, Lingyan [1 ,2 ]
Xia, Mingfeng [3 ,4 ]
Duan, Yanan [1 ]
Zhang, Lina [1 ]
Jiang, Haowen [1 ]
Hu, Xiaobei [1 ]
Yan, Hongmei [3 ,4 ]
Zhang, Yiqiu [5 ]
Gu, Yushen [5 ]
Shi, Hongcheng [5 ]
Li, Jia [1 ]
Gao, Xin [3 ,4 ]
Li, Jingya [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Fudan Univ, Zhongshan Hosp, Dept Endocrinol & Metab, Shanghai, Peoples R China
[4] Fudan Inst Metab Dis, Shanghai, Peoples R China
[5] Fudan Univ, Zhongshan Hosp, Dept Nucl Med, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
BETA(3)-ADRENERGIC RECEPTOR AGONIST; INSULIN SENSITIVITY; ENERGY-EXPENDITURE; PROTEIN-KINASE; ADIPOCYTE; OBESITY; THERMOGENESIS; METABOLISM; MECHANISM; L-796568;
D O I
10.1038/s41419-019-1706-y
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Brown adipose tissue (BAT) dissipates metabolic energy and mediates non-shivering thermogenesis, thereby boosting energy expenditure. Increasing BAT mass and activity is expected to be a promising strategy for combating obesity; however, few medications effectively and safely recruit and activate BAT in humans. Berberine (BBR), a natural compound, is commonly used as a nonprescription drug to treat diarrhea. Here, we reported that 1-month BBR intervention increased BAT mass and activity, reduced body weight, and improved insulin sensitivity in mildly overweight patients with non-alcoholic fatty liver disease. Chronic BBR treatment promoted BAT development by stimulating the expression of brown adipogenic genes, enhanced BAT thermogenesis, and global energy expenditure in diet-induced obese mice and chow-fed lean mice, Consistently, BBR facilitated brown adipocyte differentiation in both mouse and human primary brown preadipocytes. We further found that BBR increased the transcription of PRDM16, a master regulator of brown/beige adipogenesis, by inducing the active DNA demethylation of PRDM16 promoter, which might be driven by the activation of AMPK and production of its downstream tricarboxylic acid cycle intermediate alpha-Ketoglutarate. Moreover, chronic BBR administration had no impact on the BAT thermogenesis in adipose-specific AMPKa1 and AMPKa2 knockout mice. In summary, we found that BBR intervention promoted recruitment and activation of BAT and AMPK-PRDM16 axis was indispensable for the pro-BAT and pro-energy expenditure properties of BBR. Our findings suggest that BBR may be a promising drug for obesity and related metabolic disorders in humans partially through activating BAT.
引用
收藏
页数:18
相关论文
共 40 条
[1]   AMP-Activated Kinase (AMPK) Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype [J].
Abdul-Rahman, Omar ;
Kristof, Endre ;
Quang-Minh Doan-Xuan ;
Vida, Andras ;
Nagy, Lilla ;
Horvath, Ambrus ;
Simon, Jozsef ;
Maros, Tamas ;
Szentkiralyi, Istvan ;
Palotas, Lehel ;
Debreceni, Tamas ;
Csizmadia, Peter ;
Szerafin, Tamas ;
Fodor, Tamas ;
Szanto, Magdolna ;
Toth, Attila ;
Kiss, Borbala ;
Bacso, Zsolt ;
Bai, Peter .
PLOS ONE, 2016, 11 (06)
[2]   Brown Adipose Tissue and Seasonal Variation in Humans [J].
Au-Yong, Iain T. H. ;
Thorn, Natasha ;
Ganatra, Rakesh ;
Perkins, Alan C. ;
Symonds, Michael E. .
DIABETES, 2009, 58 (11) :2583-2587
[3]  
Balkow Aileen, 2016, J Biol Methods, V3, pe48, DOI 10.14440/jbm.2016.123
[4]   Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans [J].
Chondronikola, Maria ;
Volpi, Elena ;
Borsheim, Elisabet ;
Porter, Craig ;
Annamalai, Palam ;
Enerback, Sven ;
Lidell, Martin E. ;
Saraf, Manish K. ;
Labbe, Sebastien M. ;
Hurren, Nicholas M. ;
Yfanti, Christina ;
Chao, Tony ;
Andersen, Clark R. ;
Cesani, Fernando ;
Hawkins, Hal ;
Sidossis, Labros S. .
DIABETES, 2014, 63 (12) :4089-4099
[5]   Activation of Human Brown Adipose Tissue by a β3-Adrenergic Receptor Agonist [J].
Cypess, Aaron M. ;
Weiner, Lauren S. ;
Roberts-Toler, Carla ;
Elia, Elisa Franquet ;
Kessler, Skyler H. ;
Kahn, Peter A. ;
English, Jeffrey ;
Chatman, Kelly ;
Trauger, Sunia A. ;
Doria, Alessandro ;
Kolodny, Gerald M. .
CELL METABOLISM, 2015, 21 (01) :33-38
[6]   Identification and Importance of Brown Adipose Tissue in Adult Humans. [J].
Cypess, Aaron M. ;
Lehman, Sanaz ;
Williams, Gethin ;
Tal, Ilan ;
Rodman, Dean ;
Goldfine, Allison B. ;
Kuo, Frank C. ;
Palmer, Edwin L. ;
Tseng, Yu-Hua ;
Doria, Alessandro ;
Kolodny, Gerald M. ;
Kahn, C. Ronald .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (15) :1509-1517
[7]   AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte - Potential mechanism and physiological relevance [J].
Gauthier, Marie-Soleil ;
Miyoshi, Hideaki ;
Souza, Sandra C. ;
Cacicedo, Jose M. ;
Saha, Asish K. ;
Greenberg, Andrew S. ;
Ruderman, Neil B. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (24) :16514-16524
[8]   Obesity 3 Quantification of the effect of energy imbalance on bodyweight [J].
Hall, Kevin D. ;
Sacks, Gary ;
Chandramohan, Dhruva ;
Chow, Carson C. ;
Wang, Y. Claire ;
Gortmaker, Steven L. ;
Swinburn, Boyd A. .
LANCET, 2011, 378 (9793) :826-837
[9]   Brown and beige fat: development, function and therapeutic potential [J].
Harms, Matthew ;
Seale, Patrick .
NATURE MEDICINE, 2013, 19 (10) :1252-1263
[10]   PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program [J].
Harms, Matthew J. ;
Lim, Hee-Woong ;
Ho, Yugong ;
Shapira, Suzanne N. ;
Ishibashi, Jeff ;
Rajakumari, Sona ;
Steger, David J. ;
Lazar, Mitchell A. ;
Won, Kyoung-Jae ;
Seale, Patrick .
GENES & DEVELOPMENT, 2015, 29 (03) :298-307