Quantizations of probability measures and preservation of the convex order

被引:6
作者
Baker, David M. [1 ]
机构
[1] AgroParisTech, Paris, France
关键词
Convex order; Martingale transition; Quantization; BROWNIAN-MOTION; MARGINALS; MARTINGALES;
D O I
10.1016/j.spl.2015.09.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Two probability measures admit a martingale transition if and only if they are ordered in the convex order (Kellerer, 1972). We show that the commonly used quantization method, L-2-quantization, does not have the property of preserving the convex order. We introduce an alternative quantization method and demonstrate that it preserves the convex order. This result has implications concerning the choice of quantization methods for the numerical construction of martingales with specified marginals. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:280 / 285
页数:6
相关论文
共 13 条
[1]   A continuous non-Brownian motion martingale with Brownian motion marginal distributions [J].
Albin, J. M. P. .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (06) :682-686
[2]  
[Anonymous], 2000, LECT NOTES MATH
[3]  
[Anonymous], 2012, THESIS
[4]   A Brownian sheet martingale with the same marginals as the arithmetic average of geometric Brownian motion. [J].
Baker, D. ;
Yor, M. .
ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 :1532-1540
[5]   EQUIVALENT COMPARISONS OF EXPERIMENTS [J].
BLACKWELL, D .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (02) :265-272
[6]   Stochastic processes with proportional increments and the last-arrival problem [J].
Bruss, F. Thomas ;
Yor, Marc .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (09) :3239-3261
[7]  
Hirsch F., 2011, PEACOCKS ASS MARTING, V2
[8]   MARKOV COMPOSITION AND APPLICATION TO MARTINGALES [J].
KELLERER, HG .
MATHEMATISCHE ANNALEN, 1972, 198 (02) :99-&
[9]  
Lindvall T., 2002, LECT COUPLING METHOD
[10]  
Madan DB, 2002, BERNOULLI, V8, P509