A novel learning algorithm to predict individual survival after liver transplantation for primary sclerosing cholangitis

被引:31
作者
Andres, Axel [1 ,2 ]
Montano-Lozam, Aldo [3 ,4 ]
Greiner, Russell [5 ,6 ]
Uhlich, Max [6 ]
Jin, Ping [5 ]
Hoehn, Bret [6 ]
Bigam, David [1 ]
Shapiro, James Andrew Mark [1 ,2 ]
Kneteman, Norman Mark [1 ,2 ]
机构
[1] Univ Alberta Hosp, Dept Surg, Transplantat Surg, Edmonton, AB, Canada
[2] Geneva Univ Hosp, Dept Surg, Visceral Surg & Transplantat, Geneva, Switzerland
[3] Univ Alberta, Alberta Transplant Inst, Edmonton, AB, Canada
[4] Univ Alberta Hosp, Dept Med, Hepatol, Edmonton, AB, Canada
[5] Univ Alberta, Dept Comp Sci, Edmonton, AB, Canada
[6] Alberta Innovates Ctr Machine Learning, Edmonton, AB, Canada
来源
PLOS ONE | 2018年 / 13卷 / 03期
关键词
DISEASE MELD; UNITED-NETWORK; RISK-FACTORS; MODEL; SCORE; ALLOCATION; OUTCOMES; PERFORMANCE; RECIPIENTS; CIRRHOSIS;
D O I
10.1371/journal.pone.0193523
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deciding who should receive a liver transplant (LT) depends on both urgency and utility. Most survival scores are validated through discriminative tests, which compare predicted outcomes between patients. Assessing post-transplant survival utility is not discriminate, but should be "calibrated" to be effective. There are currently no such calibrated models. We developed and validated a novel calibrated model to predict individual survival after LT for Primary Sclerosing Cholangitis (PSC). We applied a software tool, PSSP, to adult patients in the Scientific Registry of Transplant Recipients (n = 2769) who received a LT for PSC between 2002 and 2013; this produced a model for predicting individual survival distributions for novel patients. We also developed an appropriate evaluation measure, D-calibration, to validate this model. The learned PSSP model showed an excellent D-calibration (p = 1.0), and passed the single-time calibration test (Hosmer-Lemeshow p-value of over 0.05) at 0.25, 1, 5 and 10 years. In contrast, the model based on traditional Cox regression showed worse calibration on long-term survival and failed at 10 years (Hosmer-Lemeshow p value = 0.027). The calculator and visualizer are available at: http://pasp.srv.ualberta.catcalculator/livertransplant2002. In conclusion we present a new tool that accurately estimates individual post liver transplantation survival.
引用
收藏
页数:14
相关论文
共 28 条
[1]   A Re-Evaluation of the Risk Factors for the Recurrence of Primary Sclerosing Cholangitis in Liver Allografts [J].
Alabraba, Edward ;
Nightingale, Peter ;
Gunson, Bridget ;
Hubscher, Stefan ;
Olliff, Simon ;
Mirza, Darius ;
Neuberger, James .
LIVER TRANSPLANTATION, 2009, 15 (03) :330-340
[2]   Analysis of Liver Transplant Outcomes for United Network for Organ Sharing Recipients 60 Years Old or Older Identifies Multiple Model for End-Stage Liver Disease-Independent Prognostic Factors [J].
Aloia, Thomas A. ;
Knight, Richard ;
Gaber, A. Osama ;
Ghobrial, R. Mark ;
Goss, John A. .
LIVER TRANSPLANTATION, 2010, 16 (08) :950-959
[3]   Early post-transplant survival: Interaction of MELD score and hospitalization status [J].
Bittermann, Therese ;
Makar, George ;
Goldberg, David S. .
JOURNAL OF HEPATOLOGY, 2015, 63 (03) :601-608
[4]   PRIORITIZATION AND ORGAN DISTRIBUTION FOR LIVER-TRANSPLANTATION [J].
BRONSTHER, O ;
FUNG, JJ ;
IZAKIS, A ;
VANTHIEL, D ;
STARZL, TE .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1994, 271 (02) :140-143
[5]   Model for End-Stage Liver Disease and Child-Turcotte-Pugh score as predictors of pretransplantation disease severity, posttransplantation outcome, and resource utilization in United Network for Organ Sharing status 2A patients [J].
Brown, RS ;
Kumar, KS ;
Russo, MW ;
Kinkhabwala, M ;
Rudow, DL ;
Harren, P ;
Lobritto, S ;
Emond, JC .
LIVER TRANSPLANTATION, 2002, 8 (03) :278-284
[6]   3-month and 12-month mortality after first liver transplant in adults in Europe: predictive models for outcome [J].
Burroughs, AK ;
Sabin, CA ;
Rolles, K ;
Delvart, V ;
Karam, V ;
Buckels, J ;
O'Grady, JG ;
Castaing, D ;
Klempnauer, J ;
Jamieson, N ;
Neuhaus, P ;
Lerut, J ;
de Goyet, JD ;
Pollard, S ;
Salizzoni, M ;
Rogiers, X ;
Muhlbacher, F ;
Valdecasas, JCG ;
Broelsch, C ;
Jaeck, D ;
Berenguer, J ;
Gonzalez, EM ;
Adam, R .
LANCET, 2006, 367 (9506) :225-232
[7]   A systematic review of the performance of the Model for End-Stage Liver Disease (MELD) in the setting of liver transplantation [J].
Cholongitas, Evangelos ;
Marelli, Laura ;
Shusang, Vibhakorn ;
Senzolo, Marco ;
Rolles, Keith ;
Patch, David ;
Burroughs, Andrew K. .
LIVER TRANSPLANTATION, 2006, 12 (07) :1049-1061
[8]  
COX DR, 1972, J R STAT SOC B, V34, P187
[9]   Additive effect of pretransplant obesity, diabetes, and cardiovascular risk factors on outcomes after liver transplantation [J].
Dare, Anna J. ;
Plank, Lindsay D. ;
Phillips, Anthony R. J. ;
Gane, Edward J. ;
Harrison, Barry ;
Orr, David ;
Jiang, Yannan ;
Bartlett, Adam S. J. R. .
LIVER TRANSPLANTATION, 2014, 20 (03) :281-290
[10]   Are There Better Guidelines for Allocation in Liver Transplantation? A Novel Score Targeting Justice and Utility in the Model for End-Stage Liver Disease Era [J].
Dutkowski, Philipp ;
Oberkofler, Christian E. ;
Slankamenac, Ksenija ;
Puhan, Milo A. ;
Schadde, Erik ;
Muellhaupt, Beat ;
Geier, Andreas ;
Clavien, Pierre A. .
ANNALS OF SURGERY, 2011, 254 (05) :745-753