Error bounds of two smoothing approximations for semi-infinite minimax problems

被引:4
作者
Yin, Hong-xia [1 ]
机构
[1] Mankato State Univ, Dept Math & Stat, Mankato, MN 56001 USA
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2009年 / 25卷 / 04期
基金
中国国家自然科学基金;
关键词
Semi-infinite minimax problem; smoothing method; aggregate function; error bound; polynomial interpolation; OPTIMIZATION; ALGORITHM; DESIGN;
D O I
10.1007/s10255-008-8828-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we investigate smoothing method for solving semi-infinite minimax problems. Not like most of the literature in semi-infinite minimax problems which are concerned with the continuous time version(i.e., the one dimensional semi-infinite minimax problems), the primary focus of this paper is on multidimensional semi-infinite minimax problems. The global error bounds of two smoothing approximations for the objective function are given and compared. It is proved that the smoothing approximation given in this paper can provide a better error bound than the existing one in literature.
引用
收藏
页码:685 / 696
页数:12
相关论文
共 23 条