Massively Enhanced Electroosmotic Transport in Nanochannels Grafted with End-Charged Polyelectrolyte Brushesd

被引:42
作者
Chen, Guang [1 ]
Das, Siddhartha [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
关键词
POLYMER BRUSHES; SOFT NANOCHANNELS; NANOFLUIDIC DIODE; IONIC CURRENT; CHAIN-LENGTH; NANOPORES; NANOPIPETTE; ADSORPTION; INTERFACE; LAYERS;
D O I
10.1021/acs.jpcb.7b00493
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We establish that nanochannels grafted with pH-responsive, end-charged polyelectrolyte (PE) brushes demonstrate a massive augmentation in the strength of the electroosmotic (EOS) transport in the presence of an external electric field. This contradicts the existing understanding that the EOS transport is severely retarded in channels grafted with the PE brushes due to the brush-induced enhanced drag force. Our mathematical model, developed on the basis of the fact that the ion concentration polarization (ICP) effect can be neglected, explains this enhancement of the EOS transport by noting that the end-charged PE brushes demonstrate a unique ability of localizing the electric double layer (or the EDL) or equivalently localizing the maximum charge density of the electrolyte ions at the location of its end, i.e., away from the grafting surface. Accordingly, the maximum EOS driving force on the liquid, which is proportional to this charge density, can be maximum at a location far away from the wall. As a consequence, the resulting local EOS velocity suffers very little retardation due to the wall shear stress enabling such massive augmentation of the EOS transport. We anticipate that the present paper will unravel a completely new paradigm in the employment of functionalized interfaces in regulating the nanofluidic transport for a myriad of applications.
引用
收藏
页码:3130 / 3141
页数:12
相关论文
共 51 条
[1]   Stimuli-Responsive Polymer Brushes for Flow Control through Nanopores [J].
Adiga, Shashishekar P. ;
Brenner, Donald W. .
JOURNAL OF FUNCTIONAL BIOMATERIALS, 2012, 3 (02)
[2]  
Akcora P, 2009, NAT MATER, V8, P354, DOI [10.1038/NMAT2404, 10.1038/nmat2404]
[3]   POLYMER ADSORPTION ON SMALL SPHERES - SCALING APPROACH [J].
ALEXANDER, S .
JOURNAL DE PHYSIQUE, 1977, 38 (08) :977-981
[4]   Sequence-Specific Recognition of DNA Oligomer Using Peptide Nucleic Acid (PNA)-Modified Synthetic Ion Channels: PNA/DNA Hybridization in Nanoconfined Environment [J].
Ali, Mubarak ;
Neumann, Reinhard ;
Ensinger, Wolfgang .
ACS NANO, 2010, 4 (12) :7267-7274
[5]   Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment [J].
Ali, Mubarak ;
Yameen, Basit ;
Cervera, Javier ;
Ramirez, Patricio ;
Neumann, Reinhard ;
Ensinger, Wolfgang ;
Knoll, Wolfgang ;
Azzaroni, Omar .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (24) :8338-8348
[6]   Biosensing with Functionalized Single Asymmetric Polymer Nanochannels [J].
Ali, Mubarak ;
Schiedt, Birgitta ;
Neumann, Reinhard ;
Ensinger, Wolfgang .
MACROMOLECULAR BIOSCIENCE, 2010, 10 (01) :28-32
[7]   A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties [J].
Ali, Mubarak ;
Ramirez, Patricio ;
Mafe, Salvador ;
Neumann, Reinhard ;
Ensinger, Wolfgang .
ACS NANO, 2009, 3 (03) :603-608
[8]   Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries [J].
Ali, Mubarak ;
Yameen, Basit ;
Neumann, Reinhard ;
Ensinger, Wolfgang ;
Knoll, Wolfgang ;
Azzaroni, Omar .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (48) :16351-16357
[9]   CHARACTERIZATION OF THE BRUSH REGIME FOR GRAFTED POLYMER LAYERS AT THE SOLID-LIQUID INTERFACE [J].
AUROY, P ;
AUVRAY, L ;
LEGER, L .
PHYSICAL REVIEW LETTERS, 1991, 66 (06) :719-722
[10]   Polyelectrolyte brushes [J].
Ballauff, Matthias ;
Borisov, Oleg .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2006, 11 (06) :316-323