Generalized Rybicki Press algorithm

被引:6
作者
Ambikasaran, Sivaram [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
semi-separable matrices; Rybicki Press algorithm; fast direct solver; fast determinant computation; exponential covariance; CARMA processes; PATTERNED MATRICES; DETERMINANTS; INVERSION; EQUATIONS;
D O I
10.1002/nla.2003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discusses a more general and numerically stable Rybicki Press algorithm, which enables inverting and computing determinants of covariance matrices, whose elements are sums of exponentials. The algorithm is true in exact arithmetic and relies on introducing new variables and corresponding equations, thereby converting the matrix into a banded matrix of larger size. Linear complexity banded algorithms for solving linear systems and computing determinants on the larger matrix enable linear complexity algorithms for the initial semi-separable matrix as well. Benchmarks provided illustrate the linear scaling of the algorithm. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:1102 / 1114
页数:13
相关论文
共 25 条
[1]  
Ambikasaran S, 2014, ESS
[2]  
[Anonymous], 1985, Integral Equations Operator Theory
[3]  
[Anonymous], 2006, Introduction to Time Series and Forecasting
[4]  
Asplund S., 1959, Mathematica Scandinavica, V7, P49, DOI [10.7146/math.scand.a-10560, DOI 10.7146/MATH.SCAND.A-10560]
[5]   ON CONTINUOUS-TIME THRESHOLD ARMA PROCESSES [J].
BROCKWELL, PJ .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 39 (02) :291-303
[6]   Levy-driven CARMA processes [J].
Brockwell, PJ .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (01) :113-124
[7]  
Camp EV, 2004, J COMPUT APPL MATH, V164, P731
[8]   Fast and stable algorithms for banded plus semiseparable systems of linear equations [J].
Chandrasekaran, S ;
Gu, M .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) :373-384
[9]  
Davis TA, 2004, ACM T MATH SOFTWARE, V30, P377, DOI 10.1145/1024074.1024080
[10]  
Demmel J. W., 2011, SUPERLU USERS GUIDE