Ray-Knight theorems related to a stochastic flow

被引:8
作者
Hu, YY
Warren, J
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
关键词
flow; Ray-Knight theorems; Jacobi processes;
D O I
10.1016/S0304-4149(99)00098-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a stochastic flow of l(1)-homeomorphisms of R. At certain stopping times, the spatial derivative of the flow is a diffusion in the space variable and its generator is given This answers several questions posed in a previous study by Bass and Burdzy (1999, Arm. Probab. 27, 50-108). (C) 2000 Elsevier Science B.V. All rights reserved. MSC: 60J55; 60J60.
引用
收藏
页码:287 / 305
页数:19
相关论文
共 24 条
  • [1] BROWNIAN EXCURSION CONDITIONED ON ITS LOCAL TIME
    Aldous, David J.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1998, 3 : 79 - 90
  • [2] [Anonymous], 1998, CONTINUOUS MARTINGAL
  • [3] [Anonymous], PROGR PROBAB STAT
  • [4] BARLOW MT, 1999, VARIABLY SKEWED BROW
  • [5] Bass RF, 1999, ANN PROBAB, V27, P50
  • [6] THE QUADRATIC VARIATION OF CERTAIN VECTORIAL MEASUREMENTS
    BOULEAU, N
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (02): : 283 - 290
  • [7] BURDZY K, 1999, LOCAL TIME FLOW RELA
  • [8] CARVERHILL A, 1984, Z WAHRSCH VERW GEBIE, V65, P245
  • [9] DELLACHERIE C, 1992, PROBABILITIES POTENT
  • [10] ETHIER S., 1986, MARKOV PROCESSES CHA, DOI 10.1002/9780470316658