[1] Max Planck Inst Nucl Phys, D-69117 Heidelberg, Germany
[2] Arctan Inc, Arlington, VA 22201 USA
来源:
PHYSICAL REVIEW RESEARCH
|
2020年
/
2卷
/
01期
关键词:
OBSERVABLES;
PARTICLE;
MOTION;
WAVE;
D O I:
10.1103/PhysRevResearch.2.013051
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
This paper presents new analytic solutions to the Dirac equation employing a recently introduced method that is based on the formulation of spinorial fields and their driving electromagnetic fields in terms of geometric algebras. A first family of solutions describe the shape-preserving translation of a wave packet along any desired trajectory in the x-y plane. In particular, we show that the dispersionless motion of a Gaussian wave packet along both elliptical and circular paths can be achieved with rather simple electromagnetic field configurations. A second family of solutions involves a plane electromagnetic wave and a combination of generally inhomogeneous electric and magnetic fields. The novel analytical solutions of the Dirac equation given here provide important insights into the connection between the quantum relativistic dynamics of electrons and the underlying geometry of the Lorentz group.Y
机构:
Univ Genoa, DIME Sez Metodi & Modelli Matemat, Via Opera Pia 15, I-16145 Genoa, ItalyUniv Genoa, DIME Sez Metodi & Modelli Matemat, Via Opera Pia 15, I-16145 Genoa, Italy
Fabbri, Luca
Tecchiolli, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, SwitzerlandUniv Genoa, DIME Sez Metodi & Modelli Matemat, Via Opera Pia 15, I-16145 Genoa, Italy
机构:
Univ Genoa, DIME Sez Metodi & Modelli Matemat, Via Opera Pia 15, I-16145 Genoa, ItalyUniv Genoa, DIME Sez Metodi & Modelli Matemat, Via Opera Pia 15, I-16145 Genoa, Italy
Fabbri, Luca
Tecchiolli, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, SwitzerlandUniv Genoa, DIME Sez Metodi & Modelli Matemat, Via Opera Pia 15, I-16145 Genoa, Italy