Nondispersive analytical solutions to the Dirac equation

被引:6
作者
Campos, Andre G. [1 ]
Cabrera, Renan [2 ]
机构
[1] Max Planck Inst Nucl Phys, D-69117 Heidelberg, Germany
[2] Arctan Inc, Arlington, VA 22201 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 01期
关键词
OBSERVABLES; PARTICLE; MOTION; WAVE;
D O I
10.1103/PhysRevResearch.2.013051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents new analytic solutions to the Dirac equation employing a recently introduced method that is based on the formulation of spinorial fields and their driving electromagnetic fields in terms of geometric algebras. A first family of solutions describe the shape-preserving translation of a wave packet along any desired trajectory in the x-y plane. In particular, we show that the dispersionless motion of a Gaussian wave packet along both elliptical and circular paths can be achieved with rather simple electromagnetic field configurations. A second family of solutions involves a plane electromagnetic wave and a combination of generally inhomogeneous electric and magnetic fields. The novel analytical solutions of the Dirac equation given here provide important insights into the connection between the quantum relativistic dynamics of electrons and the underlying geometry of the Lorentz group.Y
引用
收藏
页数:12
相关论文
共 37 条
  • [11] Dirac open-quantum-system dynamics: Formulations and simulations
    Cabrera, Renan
    Campos, Andre G.
    Bondar, Denys I.
    Rabitz, Herschel A.
    [J]. PHYSICAL REVIEW A, 2016, 94 (05)
  • [12] Analytic Solutions to Coherent Control of the Dirac Equation
    Campos, Andre G.
    Cabrera, Renan
    Rabitz, Herschel A.
    Bondar, Denys I.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (17)
  • [13] Eleuch H, 2012, APPL MATH INFORM SCI, V6, P149
  • [14] Restrictions on torsion-spinor field theory
    Fabbri, Luca
    Tecchiolli, Manuel
    [J]. MODERN PHYSICS LETTERS A, 2019, 34 (37)
  • [15] Non-trivial effects of sourceless forces for spinors: toward an Aharonov-Bohm gravitational effect?
    Fabbri, Luca
    Moulin, Flora
    Barrau, Aurelien
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (10):
  • [16] Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis
    Fillion-Gourdeau, F.
    Lorin, E.
    Bandrauk, A. D.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 122 - 145
  • [17] Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling
    Fillion-Gourdeau, Francois
    Lorin, Emmanuel
    Bandrauk, Andre D.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (07) : 1403 - 1415
  • [18] Single-cone real-space finite difference scheme for the time-dependent Dirac equation
    Hammer, Rene
    Poetz, Walter
    Arnold, Anton
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 265 : 50 - 70
  • [19] Staggered grid leap-frog scheme for the (2+1)D Dirac equation
    Hammer, Rene
    Poetz, Walter
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (01) : 40 - 52
  • [20] Interaction of Relativistic Electron-Vortex Beams with Few-Cycle Laser Pulses
    Hayrapetyan, Armen G.
    Matula, Oliver
    Aiello, Andrea
    Surzhykov, Andrey
    Fritzsche, Stephan
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (13)