Antipodes and involutions

被引:15
作者
Benedetti, Carolina [1 ]
Sagan, Bruce E. [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
Acyclic orientation; Antipode; Involution; Malvenuto-Reutenauer Hopf algebra; mQSym; NSym; Poirier-Reutenauer Hopf algebra; QSym; Shuffle Hopf algebra; Takeuchi formula; HOPF ALGEBRA; POSETS;
D O I
10.1016/j.jcta.2016.12.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If H is a connected, graded Hopf algebra, then Takeuchi's formula can be used to compute its antipode. However, there is usually massive cancellation in the result. We show how sign-reversing involutions can sometimes be used to obtain cancellation-free formulas. We apply this idea to nine different examples. We rederive known formulas for the antipodes in the Hopf algebra of polynomials, the shuffle Hopf algebra, the Hopf algebra of quasisymmetric functions in both the monomial and fundamental bases, the Hopf algebra of multiquasisymmetric functions in the fundamental basis, and the incidence Hopf algebra of graphs. We also find cancellation free expressions for particular values of the antipode in the immaculate basis for the noncommutative symmetric functions as well as the Malvenuto-Reutenauer and PoirierReutenauer Hopf algebras, some of which are the first of their kind. We include various conjectures and suggestions for future research. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 315
页数:41
相关论文
共 23 条
[1]   Structure of the Malvenuto-Reutenauer Hopf algebra of permutations [J].
Aguiar, M ;
Sottile, F .
ADVANCES IN MATHEMATICS, 2005, 191 (02) :225-275
[2]  
Aguiar Marcelo, 2010, CRM Monograph Series, V29
[3]  
[Anonymous], 1995, ANN SCI MATH QUEBEC
[4]   COMBINATORIAL HOPF ALGEBRAS OF SIMPLICIAL COMPLEXES [J].
Benedetti, Carolina ;
Hallam, Joshua ;
Machacek, John .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) :1737-1757
[5]   A Lift of the Schur and Hall-Littlewood Bases to Non-commutative Symmetric Functions [J].
Berg, Chris ;
Bergeron, Nantel ;
Saliola, Franco ;
Serrano, Luis ;
Zabrocki, Mike .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03) :525-565
[6]   A Littlewood-Richardson rule for the K-theory of Grassmannians [J].
Buch, AS .
ACTA MATHEMATICA, 2002, 189 (01) :37-78
[7]   On posets and Hopf algebras [J].
Ehrenborg, R .
ADVANCES IN MATHEMATICS, 1996, 119 (01) :1-25
[8]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[9]  
Gessel IM., 1984, CONT MATH, V34, P289
[10]  
Grinberg D., ARXIV14098356