Unraveling the Effects of Al Doping on the Electrochemical Properties of LiNi0.5Co0.2Mn0.3O2 Using First Principles

被引:137
作者
Dixit, Mudit
Markovsky, Boris
Aurbach, Doron
Major, Dan T. [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
INITIO MOLECULAR-DYNAMICS; NICKEL-OXIDE DERIVATIVES; LI-ION BATTERIES; CATHODE MATERIALS; AB-INITIO; THERMAL-STABILITY; LITHIUM INTERCALATION; TRANSITION; CO; 1ST-PRINCIPLES;
D O I
10.1149/2.0561701jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
One of the prevailing approaches to tune properties of materials is lattice doping with metal cations. Aluminum is a common choice, and numerous studies have demonstrated the ability of Al3+ doping to stabilize different positive electrode materials, such as Li[Ni-Co-Mn]O-2 (NCMs). Currently, an atomic level understanding of the stabilizing effect of Al doping in NCMs is limited. In this work, we investigate the effect of Al doping on Ni-rich-NCM-523 (LiNi0.5Co0.2Mn0.3O2). Our results suggest that Al stabilizes the structure of the cathode material via strong Al-O iono-covalent bonding due to a significant Al(s)-O(p) overlap, as well as significant charge transfer capabilities of Al. The calculated formation energies suggest that Al doping results in stabilization of partially lithiated states of NCM-523. On the other hand, calculated voltages indicate only a minor change in the voltage profiles as a function of the state-of-charge due to Al doping, and a modest increase in the Li diffusion barrier was observed. We note that high doping concentrations might mitigate the Li diffusion rates. (C) The Author(s) 2017. Published by ECS. All rights reserved.
引用
收藏
页码:A6359 / A6365
页数:7
相关论文
共 76 条
[21]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[22]   Recent developments in cathode materials for lithium ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :939-954
[23]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[24]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[25]   Thermal stability of lithium nickel oxide derivatives.: Part II:: LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30).: Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2 [J].
Guilmard, M ;
Croguennec, L ;
Delmas, C .
CHEMISTRY OF MATERIALS, 2003, 15 (23) :4484-4493
[26]   Synthesis of LiNi1/3Co1/3Mn1/3O2-zFz, cathode material from oxalate precursors for lithium ion battery [J].
He, Yu-Shi ;
Pei, Li ;
Liao, Xiao-Zhen ;
Ma, Zi-Feng .
JOURNAL OF FLUORINE CHEMISTRY, 2007, 128 (02) :139-143
[27]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[28]   Effect of Co content on performance of LiAl1/3-xCoxNi1/3Mn1/3O2 compounds for lithium-ion batteries [J].
Hu, Shao-Kang ;
Chou, Tse-Chuan ;
Hwang, Bing-Joe ;
Ceder, Gerbrand .
JOURNAL OF POWER SOURCES, 2006, 160 (02) :1287-1293
[29]   A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2 [J].
Hwang, BJ ;
Tsai, YW ;
Carlier, D ;
Ceder, G .
CHEMISTRY OF MATERIALS, 2003, 15 (19) :3676-3682
[30]   Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties [J].
Islam, M. Saiful ;
Fisher, Craig A. J. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (01) :185-204