On a class of bidimensional nonseparable wavelet multipliers

被引:19
作者
Li, YH [1 ]
机构
[1] Beijing Polytech Univ, Dept Appl Math, Beijing 100022, Peoples R China
关键词
wavelet multiplier; multiresolution analysis;
D O I
10.1016/S0022-247X(02)00089-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E = ((1 1)(1 -1)) or ((1 0) (0 2)) . A measurable function v is called an E-wavelet multiplier if (vpsi) is an E-wavelet whenever psi is an E-wavelet. In this paper, some characterizations of E-wavelet multiplier are obtained. As an application of these techniques, we prove that the set of E-wavelets is arcwise connected. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:543 / 560
页数:18
相关论文
共 13 条
[1]  
Ayache A, 1999, REV MAT IBEROAM, V15, P37
[2]   Arbitrarily smooth orthogonal nonseparable wavelets in R2 [J].
Belogay, E ;
Wang, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (03) :678-697
[3]   A characterization of affine dual frames in L2 (Rn) [J].
Bownik, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :203-221
[4]  
Cohen A., 1993, Revista Matematica Iberoamericana, V9, P51, DOI [10.4171/RMI/133, DOI 10.4171/RMI/133]
[5]  
DAREN H, 1999, CHINESE J CONT MATH, V20, P393
[6]  
Daubechies I., 1993, Ten Lectures of Wavelets, V28, P350
[7]   Examples of bivariate nonseparable continuous compactly supported orthonormal wavelets [J].
He, WJ ;
Lai, MJ .
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING V, 1997, 3169 :303-314
[8]  
HEMANDEZ E, 1996, 1 COURSE WAVELETS
[9]   NONSEPARABLE MULTIDIMENSIONAL PERFECT RECONSTRUCTION FILTER BANKS AND WAVELET BASES FOR RN [J].
KOVACEVIC, J ;
VETTERLI, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :533-555
[10]  
LI YZ, 1999, ACTA MATH SINICA, V42, P1053