TiO2 Microboxes with Controlled Internal Porosity for High-Performance Lithium Storage

被引:79
作者
Gao, Xuehui [1 ,2 ]
Li, Gaoran [1 ]
Xu, Yangyang [1 ]
Hong, Zhanglian [2 ]
Liang, Chengdu [3 ]
Lin, Zhan [1 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
关键词
battery; hydrothermal; lithium ion; microbox; TiO2; MICROWAVE-ASSISTED SYNTHESIS; HOLLOW NANOSTRUCTURES; ANODE; ELECTRODES; NANOTUBES; MECHANISM;
D O I
10.1002/anie.201506357
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Titanium dioxide (TiO2) is considered a promising anode material for high-power lithium ion batteries (LIBs) because of its low cost, high thermal/chemical stability, and good safety performance without solid electrolyte interface formation. However, the poor electronic conductivity and low lithium ion diffusivity of TiO2 result in poor cyclability and lithium ion depletion at high current rates, which hinder them from practical applications. Herein we demonstrate that hierarchically structured TiO2 microboxes with controlled internal porosity can address the aforementioned problems for high-power, long-life LIB anodes. A self-templating method for the synthesis of mesoporous microboxes was developed through Na(2)EDTA-assisted ion exchange of CaTiO3 microcubes. The resulting TiO2 nanorods were organized into microboxes that resemble the microcube precursors. This nanostructured TiO2 material has superior lithium storage properties with a capacity of 187 mAh g(-1) after 300 cycles at 1C and good rate capabilities up to 20C.
引用
收藏
页码:14331 / 14335
页数:5
相关论文
共 37 条
[1]  
[Anonymous], 2014, Angew. Chem. Int. Ed., DOI DOI 10.1002/ange.201403611
[2]   Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance [J].
Bae, Chang-Jun ;
Erdonmez, Can K. ;
Halloran, John W. ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1254-1258
[3]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[4]   Hierarchical WO3 hollow shells:: Dendrite, sphere, dumbbell, and their photocatalytic properties [J].
Chen, Di ;
Ye, Jinhua .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (13) :1922-1928
[5]   Sol-gel nanoglues for an organic binder-free TiO2 nanofiber anode for lithium ion batteries [J].
Choi, Junghyun ;
Lee, Sangkyu ;
Ha, Jaehwan ;
Song, Taeseup ;
Paik, Ungyu .
NANOSCALE, 2013, 5 (08) :3230-3234
[6]   Formation of Mesoporous Heterostructured BiVO4/Bi2S3 Hollow Discoids with Enhanced Photoactivity [J].
Gao, Xuehui ;
Wu, Hao Bin ;
Zheng, Lingxia ;
Zhong, Yijun ;
Hu, Yong ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (23) :5917-5921
[7]   Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries [J].
Han, Hyungkyu ;
Song, Taeseup ;
Bae, Jae-Young ;
Nazar, Linda F. ;
Kim, Hansu ;
Paik, Ungyu .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4532-4536
[8]   Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage [J].
Hu, Han ;
Yu, Le ;
Gao, Xuehui ;
Lin, Zhan ;
Lou, Xiong Wen .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (05) :1480-1483
[9]   Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J].
Ji, Liwen ;
Lin, Zhan ;
Alcoutlabi, Mataz ;
Zhang, Xiangwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) :2682-2699
[10]   How the electrolyte limits fast discharge in nanostructured batteries and supercapacitors [J].
Johns, Phil A. ;
Roberts, Matthew R. ;
Wakizaka, Yasuaki ;
Sanders, James H. ;
Owen, John R. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (11) :2089-2092