h-vectors of generalized associahedra and noncrossing partitions

被引:15
作者
Athanasiadis, Christos A. [1 ]
Brady, Thomas
McCammond, Jon
Watt, Colum
机构
[1] Univ Athens, Dept Math, Div Algebra & Geometry, Athens 15784, Greece
[2] Dublin City Univ, Sch Math Sci, Dublin 9, Ireland
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[4] Dublin Inst Technol, Sch Math Sci, Dublin 8, Ireland
关键词
D O I
10.1155/IMRN/2006/69705
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A uniform proof is given that the entries of the h-vector of the cluster complex Delta(Phi), associated by S. Fomin and A. Zelevinsky to a finite root system Phi, count elements of the lattice L of noncrossing partitions of corresponding type by rank. Similar interpretations for the h-vector of the positive part of Delta(Phi) are provided. The proof utilizes the appearance of the complex Delta(Phi) in the context of the lattice L in recent work of two of the authors, as well as an explicit shelling of Delta(Phi).
引用
收藏
页数:28
相关论文
共 17 条
[1]  
[Anonymous], 1995, TOPOLOGICAL METHODS
[2]  
ATHANASIADIS CA, IN PRESS P AM MATH S
[3]   On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements [J].
Athanasiadis, Christos A. ;
Tzanaki, Eleni .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 23 (04) :355-375
[4]   The dual braid monoid [J].
Bessis, D .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (05) :647-683
[5]   K(π, 1)'s for Artin groups of finite type [J].
Brady, T ;
Watt, C .
GEOMETRIAE DEDICATA, 2002, 94 (01) :225-250
[6]  
BRADY T, 2000, P C GEOM COMB GROU 1
[7]  
BRADY T, IN PRESS T AM MATH S
[8]   Polytopal realizations of generalized associahedra [J].
Chapoton, F ;
Fomin, S ;
Zelevinsky, A .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (04) :537-566
[9]  
CHAPOTON F, IN PRESS BELGIAN MAT
[10]  
CHAPOTON F, 2004, SEMINAIRE LOTHARINGI, V51, P1