Histogram-Based Feature Extraction from Individual Gray Matter Similarity-Matrix for Alzheimer's Disease Classification

被引:30
作者
Beheshti, Iman [1 ]
Maikusa, Norihide [1 ]
Matsuda, Hiroshi [1 ]
Demirel, Hasan [2 ]
Anbarjafari, Gholamreza [3 ,4 ]
机构
[1] Natl Ctr Neurol & Psychiat, Integrat Brain Imaging Ctr, Tokyo 1878551, Japan
[2] Eastern Mediterranean Univ, Biomed Image Proc Grp, Dept Elect & Elect Engn, TR-10 Famagusta, Mersin, Turkey
[3] Univ Tartu, Inst Technol, iCV Res Grp, Tartu, Estonia
[4] Hasan Kalyoncu Univ, Dept Elect & Elect Engn, Gaziantep, Turkey
基金
日本科学技术振兴机构;
关键词
Alzheimer's disease; Fisher criterion; histogram; individual gray matter; similarity-matrix; MILD COGNITIVE IMPAIRMENT; COMPUTER-AIDED DIAGNOSIS; PARTIAL LEAST-SQUARES; STRUCTURAL MRI; SEGMENTATION; PREDICTION; PATTERNS; ADNI;
D O I
10.3233/JAD-160850
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Automatic computer-aided diagnosis (CAD) systems have been widely used in classification of patients who suffer from Alzheimer's disease (AD). This paper presents an automatic CAD system based on histogram feature extraction from single-subject gray matter similarity-matrix for classifying the AD patients from healthy controls (HC) using structural magnetic resonance imaging (MRI) data. The proposed CAD system is composed of five stages. In the first stage, segmentation is employed to perform pre-processing on the MRI images, and segment into gray matter, white matter, and cerebrospinal fluid using the voxel-based morphometric toolbox procedure. In the second stage, gray matter MRI scans are used to construct similarity-matrices. In the third stage, a novel statistical feature-generation process is proposed, utilizing the histogram of the individual similarity-matrix to represent statistical patterns of the respective similarity-matrices of different size and order into fixed-size feature-vectors. In the fourth stage, we propose to combine MRI measures with a neuropsychological test, the Functional Assessment Questionnaire (FAQ), to improve the classification accuracy. Finally, the classification is performed using a support vector machine and evaluated with the 10-fold cross-validation strategy. We evaluated the proposed method on 99 AD and 102 HC subjects from the J-ADNI. The proposed CAD system yields an 84.07% classification accuracy using MRI measures and 97.01% for combining MRI measures with FAQ scores, respectively. The experimental results indicate that the performance of the proposed system is competitive with respect to state-of-the-art techniques reported in the literature.
引用
收藏
页码:1571 / 1582
页数:12
相关论文
共 52 条
[1]   Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment [J].
Aguilar, Carlos ;
Westman, Eric ;
Muehlboeck, J-Sebastian ;
Mecocci, Patrizia ;
Vellas, Bruno ;
Tsolaki, Magda ;
Kloszewska, Iwona ;
Soininen, Hilkka ;
Lovestone, Simon ;
Spenger, Christian ;
Simmons, Andrew ;
Wahlund, Lars-Olof .
PSYCHIATRY RESEARCH-NEUROIMAGING, 2013, 212 (02) :89-98
[3]   Face recognition using color local binary pattern from mutually independent color channels [J].
Anbarjafari, Gholamreza .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2013,
[4]   Partial least squares for discrimination in fMRI data [J].
Andersen, Anders H. ;
Rayens, William S. ;
Liu, Yushu ;
Smith, Charles D. .
MAGNETIC RESONANCE IMAGING, 2012, 20 (03) :446-452
[5]  
[Anonymous], 2003, Statistical pattern recognition
[6]   Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease [J].
Beheshti, I. ;
Demirel, H. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 64 :208-216
[7]   Feature-ranking-based Alzheimer's disease classification from structural MRI [J].
Beheshti, Iman ;
Demirel, Hasan .
MAGNETIC RESONANCE IMAGING, 2016, 34 (03) :252-263
[8]   Classification of Alzheimer's disease subjects from MRI using hippocampal visual features [J].
Ben Ahmed, Olfa ;
Benois-Pineau, Jenny ;
Allard, Michele ;
Ben Amar, Chokri ;
Catheline, Gwenaeelle .
MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (04) :1249-1266
[9]   Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge [J].
Bron, Esther E. ;
Smits, Marion ;
van der Flier, Wiesje M. ;
Vrenken, Hugo ;
Barkhof, Frederik ;
Scheltens, Philip ;
Papma, Janne M. ;
Steketee, Rebecca M. E. ;
Orellana, Carolina Mendez ;
Meijboom, Rozanna ;
Pinto, Madalena ;
Meireles, Joana R. ;
Garrett, Carolina ;
Bastos-Leite, Antonio J. ;
Abdulkadir, Ahmed ;
Ronneberger, Olaf ;
Amoroso, Nicola ;
Bellotti, Roberto ;
Cardenas-Pena, David ;
Alvarez-Meza, Andres M. ;
Dolph, Chester V. ;
Iftekharuddin, Khan M. ;
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Fonov, Vladimir S. ;
Franke, Katja ;
Gaser, Christian ;
Ledig, Christian ;
Guerrero, Ricardo ;
Tong, Tong ;
Gray, Katherine R. ;
Moradi, Elaheh ;
Tohka, Jussi ;
Routier, Alexandre ;
Durrleman, Stanley ;
Sarica, Alessia ;
Di Fatta, Giuseppe ;
Sensi, Francesco ;
Chincarini, Andrea ;
Smith, Garry M. ;
Stoyanov, Zhivko V. ;
Sorensen, Lauge ;
Nielsen, Mads ;
Tangaro, Sabina ;
Inglese, Paolo ;
Wachinger, Christian ;
Reuter, Martin ;
van Swieten, John C. ;
Niessen, Wiro J. ;
Klein, Stefan .
NEUROIMAGE, 2015, 111 :562-579
[10]   Association rule-based feature selection method for Alzheimer's disease diagnosis [J].
Chaves, R. ;
Ramirez, J. ;
Gorriz, J. M. ;
Puntonet, C. G. .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (14) :11766-11774