Capital Asset Pricing Model with Interval Data

被引:6
作者
Piamsuwannakit, Sutthiporn [1 ,2 ]
Autchariyapanitkul, Kittawit [3 ]
Sriboonchitta, Songsak [1 ]
Ouncharoen, Rujira [4 ]
机构
[1] Chiang Mai Univ, Fac Econ, Chiang Mai 50000, Thailand
[2] Chiang Rai Rajabhat Univ, Fac Management Sci, Chiang Rai, Thailand
[3] Maejo Univ, Fac Econ, Chiang Mai, Thailand
[4] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50000, Thailand
来源
INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING, IUKM 2015 | 2015年 / 9376卷
关键词
CAPM; Interval-valued data; Least squares method; Linear regression; LINEAR-REGRESSION;
D O I
10.1007/978-3-319-25135-6_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We used interval-valued data to predict stock returns rather than just point valued data. Specifically, we used these interval values in the classical capital asset pricing model to estimate the beta coefficient that represents the risk in the portfolios management analysis. We also use the method to obtain a point valued of asset returns from the interval-valued data to measure the sensitivity of the asset return and the market return. Finally, AIC criterion indicated that this approach can provide us better results than use the close price for prediction.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 16 条
[1]  
Autchariyapanitkul K., 2015, STUDIES COMPUTATIONA, V583, P219
[2]  
Barnes L.M., 2002, WORKING PAPER
[3]  
Billard Lynne., 2007, SELECTED CONTRIBUTIO, P3
[4]   Likelihood-based Imprecise Regression [J].
Cattaneo, Marco E. G. V. ;
Wiencierz, Andrea .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2012, 53 (08) :1137-1154
[5]   Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity [J].
Chen, Cathy W. S. ;
Lin, Simon ;
Yu, Philip L. H. .
COMPUTATIONAL ECONOMICS, 2012, 40 (01) :19-48
[6]  
de Carvalho FD, 2004, LECT NOTES COMPUT SC, V3238, P295
[7]   LEAST-SQUARES FITTING OF COMPACT SET-VALUED DATA [J].
DIAMOND, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 147 (02) :351-362
[8]   Least squares fitting of an affine function and strength of association for interval-valued data [J].
Gil, MA ;
Lubiano, MA ;
Montenegro, M ;
López, MT .
METRIKA, 2002, 56 (02) :97-111
[9]  
John L., 1965, REV ECON STAT, V47, P13
[10]   Linear regression with random fuzzy variables: extended classical estimates, best linear estimates, least squares estimates [J].
Korner, R ;
Nather, W .
INFORMATION SCIENCES, 1998, 109 (1-4) :95-118