The canonical model of a singular curve

被引:23
作者
Kleiman, Steven Lawrence [1 ]
Martins, Renato Vidal [2 ]
机构
[1] 2 278 MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Fed Minas Gerais, ICEx, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
关键词
Canonical model; Singular curve; non-Gorenstein curve; GORENSTEIN CURVES; VARIETIES; RINGS;
D O I
10.1007/s10711-008-9331-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give refined statements and modern proofs of Rosenlicht's results about the canonical model C' of an arbitrary complete integral curve C. Notably, we prove that C and C' are birationally equivalent if and only if C is nonhyperelliptic, and that, if C is nonhyperelliptic, then C' is equal to the blowup of C with respect to the canonical sheaf omega. We also prove some new results: we determine just when C' is rational normal, arithmetically normal, projectively normal, and linearly normal.
引用
收藏
页码:139 / 166
页数:28
相关论文
共 15 条
[1]   One-dimensional almost Gorenstein rings [J].
Barucci, V ;
Froberg, R .
JOURNAL OF ALGEBRA, 1997, 188 (02) :418-442
[2]  
Catanese Fabrizio, 1982, Progr. Math., V24, P51
[3]   LINEAR SECTIONS OF DETERMINANTAL VARIETIES [J].
EISENBUD, D .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (03) :541-575
[4]   DETERMINANTAL EQUATIONS FOR CURVES OF HIGH DEGREE [J].
EISENBUD, D ;
KOH, J ;
STILLMAN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (03) :513-539
[5]   ON HYPERELLIPTIC POLARIZED VARIETIES [J].
FUJITA, T .
TOHOKU MATHEMATICAL JOURNAL, 1983, 35 (01) :1-44
[6]  
Fujita T., 1977, Complex analysis and algebraic geometry, P165
[7]   GENERALIZED DIVISORS ON GORENSTEIN CURVES AND A THEOREM OF NOETHER [J].
HARTSHORNE, R .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1986, 26 (03) :375-386
[8]   Singular hyperelliptic curves [J].
Homma, M .
MANUSCRIPTA MATHEMATICA, 1999, 98 (01) :21-36
[9]  
KLEIMAN SL, 1971, COMPOS MATH, V23, P407
[10]   STABLE IDEALS AND ARF RINGS [J].
LIPMAN, J .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (03) :649-&