Reconstituting poly(glycerol phosphate) wall teichoic acid biosynthesis in vitro using authentic substrates

被引:13
作者
Gale, Robert T. [1 ,2 ]
Sewell, Edward W. [1 ,2 ]
Garrett, Teresa A. [3 ]
Brown, Eric D. [1 ,2 ]
机构
[1] McMaster Univ, Michael G DeGroote Inst Infect Dis Res, Hamilton, ON L8N 3Z5, Canada
[2] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON L8N 3Z5, Canada
[3] Vassar Coll, Dept Chem, Poughkeepsie, NY 12604 USA
基金
美国国家科学基金会; 加拿大健康研究院;
关键词
BACILLUS-SUBTILIS; 168; STAPHYLOCOCCUS-AUREUS; POLYMERASE TAGF; MEMBRANE ASSOCIATION; BACTERIAL-MEMBRANES; GLYCEROL PHOSPHATE; KINETIC MECHANISM; MASS-SPECTROMETRY; PLANT POLYPRENOLS; ESCHERICHIA-COLI;
D O I
10.1039/c4sc00802b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wall teichoic acids (WTAs) are phosphate-rich anionic polymers that constitute a substantial portion of the Gram-positive cell wall. Recent work has demonstrated the importance of WTAs in cell shape, virulence and antibiotic resistance. These findings highlight WTA biosynthetic enzymes as attractive targets for novel antimicrobial agents. Due to challenges involved in the isolation of natural substrates, in vitro studies of the recombinant enzymes have largely employed soluble substrate analogues. Herein we present a semisynthetic approach to obtain the authentic precursor for WTA biosynthesis, Lipid alpha, complete with its polyisoprenoid lipid moiety. We show that this material can be used to reconstitute the activities of four enzymes involved in poly(glycerol phosphate) WTA biosynthesis in a detergent micelle. This work enables the creation of chemically defined and realistic systems for the study of interfacial catalysis by WTA biosyntheticmachinery, which could aid efforts to discover and develop novel agents against WTA biosynthesis.
引用
收藏
页码:3823 / 3830
页数:8
相关论文
共 52 条
[1]   Studies of the Genetics, Function, and Kinetic Mechanism of TagE, the Wall Teichoic Acid Glycosyltransferase in Bacillus subtilis 168 [J].
Allison, Sarah E. ;
D'Elia, Michael A. ;
Arar, Sharif ;
Monteiro, Mario A. ;
Brown, Eric D. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (27) :23708-23716
[2]   Wall Teichoic Acids of Staphylococcus aureus Limit Recognition by the Drosophila Peptidoglycan Recognition Protein-SA to Promote Pathogenicity [J].
Atilano, Magda L. ;
Yates, James ;
Glittenberg, Marcus ;
Filipe, Sergio R. ;
Ligoxygakis, Petros .
PLOS PATHOGENS, 2011, 7 (12)
[3]   Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus [J].
Atilano, Magda L. ;
Pereira, Pedro M. ;
Yates, James ;
Reed, Patricia ;
Veiga, Helena ;
Pinho, Mariana G. ;
Filipe, Sergio R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (44) :18991-18996
[4]   CTP:glycerol 3-phosphate cytidylyltransferase (Tarp) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar Km values [J].
Badurina, DS ;
Zolli-Juran, M ;
Brown, ED .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2003, 1646 (1-2) :196-206
[5]   Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes [J].
Barreteau, Helene ;
Magnet, Sophie ;
El Ghachi, Meriem ;
Touze, Thierry ;
Arthur, Michel ;
Mengin-Lecreulx, Dominique ;
Blanot, Didier .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2009, 877 (03) :213-220
[6]   The amino terminus of Bacillus subtilis TagB possesses separable localization and functional properties [J].
Bhavsar, Amit P. ;
D'Elia, Michael A. ;
Sahakian, Tiffany D. ;
Brown, Eric D. .
JOURNAL OF BACTERIOLOGY, 2007, 189 (19) :6816-6823
[7]   The TagB protein in Bacillus subtilis 168 is an intracellular peripheral membrane protein that can incorporate glycerol phosphate onto a membrane-bound acceptor in vitro [J].
Bhavsar, AP ;
Truant, R ;
Brown, ED .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (44) :36691-36700
[8]   Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America [J].
Boucher, Helen W. ;
Talbot, George H. ;
Bradley, John S. ;
Edwards, John E., Jr. ;
Gilbert, David ;
Rice, Louis B. ;
Scheld, Michael ;
Spellberg, Brad ;
Bartlett, John .
CLINICAL INFECTIOUS DISEASES, 2009, 48 (01) :1-12
[9]   The biosynthesis of peptidoglycan lipid-linked intermediates [J].
Bouhss, Ahmed ;
Trunkfield, Amy E. ;
Bugg, Timothy D. H. ;
Mengin-Lecreulx, Dominique .
FEMS MICROBIOLOGY REVIEWS, 2008, 32 (02) :208-233
[10]   Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes [J].
Breukink, E ;
van Heusden, HE ;
Vollmerhaus, PJ ;
Swiezewska, E ;
Brunner, L ;
Walker, S ;
Heck, AJR ;
de Kruijff, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (22) :19898-19903