Acoustophoresis of hollow and core-shell particles in two-dimensional resonance modes

被引:29
作者
Leibacher, Ivo [1 ]
Dietze, Wolfgang [1 ]
Hahn, Philipp [1 ]
Wang, Jingtao [1 ]
Schmitt, Steven [2 ]
Dual, Juerg [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Mech Syst IMES, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Bioproc Lab BPL, CH-4058 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
Acoustophoresis; Acoustofluidics; Ultrasonic particle manipulation; Core-shell particles; Gor'kov potential; ACOUSTIC RADIATION FORCES; MECHANICAL-PROPERTIES; MICROFLUIDIC SYSTEMS; DOUBLE EMULSIONS; FLUIDIC DEVICE; CELLS; CHIP; MANIPULATION; ULTRASOUND; SEPARATION;
D O I
10.1007/s10404-013-1240-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Motivated by the applications of ultrasonic particle manipulation in a biotechnological context, a study on acoustophoresis of hollow and core-shell particles is presented with analytical derivations, numerical simulations and confirming experiments. For a long-wavelength calculation of the acoustic radiation forces, the Gor'kov potential of hollow, air-filled particles and particles with solid or fluid core and shell is derived. The validity as well as the applicable range of the long-wavelength calculation is evaluated with numerical simulations in Comsol Multiphysics(A (R)). The results are experimentally verified in the acoustic field of an intrinsically two-dimensional fluid resonance mode, which allows for a more complex analysis than the common one-dimensional ultrasonic standing waves or their superposition to two-dimensional fields. Experiments were conducted with hollow glass particles (13.9 mu m diameter) in a microfluidic chamber of 1.2 mm x 1.2 mm x 0.2 mm on a silicon-based device with piezoelectric excitation around 870 kHz. The described resonance mode is of additional interest for particle trapping and medium exchange on certain particle types, and it reveals a novel approach for particle characterization or separation.
引用
收藏
页码:513 / 524
页数:12
相关论文
共 45 条
[11]   Contribution of the nucleus to the mechanical properties of endothelial cells [J].
Caille, N ;
Thoumine, O ;
Tardy, Y ;
Meister, JJ .
JOURNAL OF BIOMECHANICS, 2002, 35 (02) :177-187
[12]   Fabrication of Microbeads with a Controllable Hollow Interior and Porous Wall Using a Capillary Fluidic Device [J].
Choi, Sung-Wook ;
Zhang, Yu ;
Xia, Younan .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (18) :2943-2949
[13]   Elastomeric Negative Acoustic Contrast Particles for Affinity Capture Assays [J].
Cushing, Kevin W. ;
Piyasena, Menake E. ;
Carroll, Nick J. ;
Maestas, Gian C. ;
Lopez, Beth Ann ;
Edwards, Bruce S. ;
Graves, Steven W. ;
Lopez, Gabriel P. .
ANALYTICAL CHEMISTRY, 2013, 85 (04) :2208-2215
[14]   Acoustofluidics 19: Ultrasonic microrobotics in cavities: devices and numerical simulation [J].
Dual, Juerg ;
Hahn, Philipp ;
Leibacher, Ivo ;
Moeller, Dirk ;
Schwarz, Thomas ;
Wang, Jingtao .
LAB ON A CHIP, 2012, 12 (20) :4010-4021
[15]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[16]   Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays [J].
Evander, Mikael ;
Johansson, Linda ;
Lilliehorn, Tobias ;
Piskur, Jure ;
Lindvall, Magnus ;
Johansson, Stefan ;
Almqvist, Monica ;
Laurell, Thomas ;
Nilsson, Johan .
ANALYTICAL CHEMISTRY, 2007, 79 (07) :2984-2991
[17]   Acoustofluidics 20: Applications in acoustic trapping [J].
Evander, Mikael ;
Nilsson, Johan .
LAB ON A CHIP, 2012, 12 (22) :4667-4676
[18]  
Gor'kov L., 1962, SOV PHYS DOKL, V6, P773, DOI DOI 10.1039/C004504G
[19]   Miniaturising the laboratory in emulsion droplets [J].
Griffiths, Andrew D. ;
Tawfik, Dan S. .
TRENDS IN BIOTECHNOLOGY, 2006, 24 (09) :395-402
[20]   On-chip measurements of cell compressibility via acoustic radiation [J].
Hartono, Deny ;
Liu, Yang ;
Tan, Pei Lin ;
Then, Xin Yi Sherlene ;
Yung, Lin-Yue Lanry ;
Lim, Kian-Meng .
LAB ON A CHIP, 2011, 11 (23) :4072-4080