Microfluidic Dynamic Interfacial Tensiometry (μDIT)

被引:113
作者
Brosseau, Quentin [1 ]
Vrignon, Jeremy [1 ]
Baret, Jean-Christophe [1 ]
机构
[1] Max Planck Inst Dynam & Self Org MPIDS, D-37077 Gottingen, Germany
关键词
SURFACTANT ADSORPTION; DROP; BUBBLE; KINETICS; MICROTENSIOMETER; METHODOLOGY; DIFFUSION; TRANSPORT; EQUATION;
D O I
10.1039/c3sm52543k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We designed, developed and characterized a microfluidic method for the measurement of surfactant adsorption kinetics via interfacial tensiometry on a microfluidic chip. The principle of the measurement is based on the deformability of droplets as a response to hydrodynamic forcing through a series of microfluidic expansions. We focus our analysis on one perfluoro surfactant molecule of practical interest for droplet-based microfluidic applications. We show that although the adsorption kinetics is much faster than the kinetics of the corresponding pendant drop experiment, our droplet-based microfluidic system has a sufficient time resolution to obtain quantitative measurement at the sub-second time-scale on nanoliter droplet volumes, leading to both a gain by a factor of similar to 10 in time resolution and a downscaling of the measurement volumes by a factor of similar to 1000 compared to standard techniques. Our approach provides new insight into the adsorption of surfactant molecules at liquid-liquid interfaces in a confined environment, relevant to emulsification, encapsulation and foaming, and the ability to measure adsorption and desorption rate constants.
引用
收藏
页码:3066 / 3076
页数:11
相关论文
共 57 条
[1]   Using bulk convection in a microtensiometer to approach kinetic-limited surfactant dynamics at fluid-fluid interfaces [J].
Alvarez, Nicolas J. ;
Vogus, Douglas R. ;
Walker, Lynn M. ;
Anna, Shelley L. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 372 :183-191
[2]   A Microtensiometer To Probe the Effect of Radius of Curvature on Surfactant Transport to a Spherical Interface [J].
Alvarez, Nicolas J. ;
Walker, Lynn M. ;
Anna, Shelley L. .
LANGMUIR, 2010, 26 (16) :13310-13319
[3]   Microscale tipstreaming in a microfluidic flow focusing device [J].
Anna, Shelley L. ;
Mayer, Hans C. .
PHYSICS OF FLUIDS, 2006, 18 (12)
[4]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[5]   Surfactants in droplet-based microfluidics [J].
Baret, Jean-Christophe .
LAB ON A CHIP, 2012, 12 (03) :422-433
[6]   Kinetic Aspects of Emulsion Stabilization by Surfactants: A Microfluidic Analysis [J].
Baret, Jean-Christophe ;
Kleinschmidt, Felix ;
El Harrak, Abdeslam ;
Griffiths, Andrew D. .
LANGMUIR, 2009, 25 (11) :6088-6093
[7]   Microfluidic stickers [J].
Bartolo, Denis ;
Degre, Guillaume ;
Nghe, Philippe ;
Studer, Vincent .
LAB ON A CHIP, 2008, 8 (02) :274-279
[8]   Emulsions: basic principles [J].
Bibette, J ;
Calderon, FL ;
Poulin, P .
REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (06) :969-1033
[9]   DYNAMIC SURFACE-TENSION OF IONIC SURFACTANT SOLUTIONS [J].
BONFILLON, A ;
SICOLI, F ;
LANGEVIN, D .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1994, 168 (02) :497-504
[10]   Decompressing emulsion droplets favors coalescence [J].
Bremond, Nicolas ;
Thiam, Abdou R. ;
Bibette, Jerome .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)