Anisotropic porous skeleton for efficient thermal energy storage and enhanced heat transfer: Experiments and numerical models

被引:12
作者
Du, Peixing [1 ]
Wang, Meng [1 ]
Zhong, Xiaochen [1 ]
Chen, Bohao [1 ]
Li, Ziyan [1 ]
Zhou, Runyi [1 ]
Huo, Yutao [1 ]
Rao, Zhonghao [2 ,3 ]
机构
[1] China Univ Min & Technol, Sch Low Carbon Energy & Power Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] Hebei Univ Technol, Sch Energy & Environm Engn, Tianjin 300401, Peoples R China
[3] Hebei Univ Technol, Hebei Key Lab Thermal Sci & Energy Clean Utilizat, Tianjin 300401, Peoples R China
基金
中国国家自然科学基金;
关键词
Ice-template method; Anisotropic pore structure; Shape-stabilized phase change materials; Heat transfer enhancement; Lattice-Boltzmann method; PHASE-CHANGE MATERIALS; CONDUCTIVITY; FOAM; PERFORMANCE; COMPOSITES; PARAFFIN; BN;
D O I
10.1016/j.est.2022.106021
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The pore structure of the porous skeleton plays a decisive role in the performance of the shape-stabilized phase change materials (ss-PCM). For example, in the adsorption rate of the phase change material and the effect of heat transfer enhancement. In this paper, the anisotropic porous skeleton was prepared via ice-template method and used as supports for phase change materials (PCM). The coherent hierarchical pore structure not only made the adsorption of PCM more effectively, increasing the pore utilization rate to 98.22 % and realizing a satisfactory heat storage density of 94.17 J/g (50.42 wt%), but also achieved the prominent heat transfer enhancement in axial direction. Owing to this, the prepared anisotropic ss-PCM showed excellent thermal management capability, which reduced the chip surface temperature from 160 degrees C to 80 degrees C; even 20 degrees C lower than using aluminum heat sinks. The numerical model via Lattice-Boltzmann method was used to investigate the mechanism of enhanced heat transfer. It showed that the anisotropic porous skeleton strongly enhanced the convection in the melting process of PCM by reducing the tortuosity, which greatly compensated for the low thermal conductivity of the skeleton and fully demonstrated the importance of the design of the pore structures. Therefore, it provided useful suggestions for the preparation of high quality ss-PCMs.
引用
收藏
页数:10
相关论文
共 50 条
[31]   An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage [J].
Fan, Li-Wu ;
Zhu, Zi-Qin ;
Xiao, Sheng-Lan ;
Liu, Min-Jie ;
Lu, Hai ;
Zeng, Yi ;
Yu, Zi-Tao ;
Cen, Ke-Fa .
APPLIED THERMAL ENGINEERING, 2016, 100 :1063-1075
[32]   NUMERICAL ANALYSIS OF CHARGING PROCESS OF A SHELL AND TUBE LATENT HEAT THERMAL ENERGY STORAGE SYSTEM WITH PCM EMBEDDED IN HIGHLY CONDUCTIVE POROUS MATERIAL [J].
Mahdavi, Mahboobe ;
Tiari, Saeed ;
Sawyer, Carley .
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 6, 2019,
[33]   High thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites [J].
Liu, Xianglei ;
Wang, Haolei ;
Xu, Qiao ;
Luo, Qingyang ;
Song, Yanan ;
Tian, Yang ;
Chen, Meng ;
Xuan, Yimin ;
Jin, Yi ;
Jia, Yixuan ;
Li, Yongliang ;
Ding, Yulong .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 175
[34]   Magnetic Field-induced Enhancement of Phase Change Heat Transfer via Biomimetic Porous Structure for Solar-thermal Energy Storage [J].
Li, Juan ;
Zhu, Zhangyu ;
Arshad, Adeel ;
Zhang, Shuai ;
Shi, Lei ;
Yan, Yuying .
JOURNAL OF BIONIC ENGINEERING, 2021, 18 (05) :1215-1224
[35]   Enhancement of heat transfer through the incorporation of copper metal wool in latent heat thermal energy storage systems [J].
Ribezzo, Alessandro ;
Morciano, Matteo ;
Zsembinszki, Gabriel ;
Amigo, Sara Risco ;
Kala, Saranprabhu Mani ;
Borri, Emiliano ;
Bergamasco, Luca ;
Fasano, Matteo ;
Chiavazzo, Eliodoro ;
Prieto, Cristina ;
Cabeza, Luisa F. .
RENEWABLE ENERGY, 2024, 231
[36]   SOLID/LIQUID PHASE CHANGE HEAT TRANSFER IN LATENT HEAT THERMAL ENERGY STORAGE [J].
Zhou, D. ;
Zhao, C. Y. .
ES2009: PROCEEDINGS OF THE ASME 3RD INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2009, :863-869
[37]   Analytical solution of heat transfer in a shell-and-tube latent thermal energy storage system [J].
Bechiri, Mohammed ;
Mansouri, Kacem .
RENEWABLE ENERGY, 2015, 74 :825-838
[38]   Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers [J].
Al-Abidi, Abduljalil A. ;
Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammad, Abdulrahman Th. .
APPLIED THERMAL ENGINEERING, 2013, 53 (01) :147-156
[39]   Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations [J].
Tiari, Saeed ;
Hockins, Addison ;
Mahdavi, Mahboobe .
CASE STUDIES IN THERMAL ENGINEERING, 2021, 25
[40]   A review of artificial intelligence to thermal energy storage and heat transfer improvement in phase change materials [J].
Nems, Artur ;
Daniarta, Sindu ;
Nems, Magdalena ;
Kolasinski, Piotr ;
Ushak, Svetlana .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2025, 44