Spatial and temporal prediction of soil properties from legacy data

被引:0
|
作者
Marchant, B. P. [1 ]
Crawford, D. M. [2 ]
Robinson, N. J. [3 ]
机构
[1] Rothamsted Res, Harpenden, Herts, England
[2] Dept Primary Ind, Ellinbank, Vic, Australia
[3] Dept Primary Ind, Bendigo, Vic, Australia
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
暂无
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soil monitoring networks are expensive to implement and can only predict rates of change once soil properties have been measured twice. Legacy soil datasets can act as cheaper substitutes and can yield immediate assessments of change but problems can arise because they are not designed for this purpose. We demonstrate that geostatistical techniques can predict spatial and temporal trends in a dataset of soil samples submitted by farmers across Victoria, Australia. Expert interpretation is required to determine whether observed trends correspond to changes in underlying soil properties rather than changes in farmers' priorities when requesting soil tests. The estimated models of variation can also be used to design soil monitoring networks although expert interpretation is again required to assess the extent to which the variation of the legacy data reflects that from a purpose-built survey.
引用
收藏
页码:239 / 244
页数:6
相关论文
共 50 条
  • [1] Spatial prediction of soil properties for the Busia area, Kenya using legacy soil data
    Minai, Joshua O.
    Libohova, Zamir
    Schulze, Darrell G.
    GEODERMA REGIONAL, 2021, 25
  • [2] Prediction and spatial-temporal changes of soil organic matter in the Huanghuaihai Plain by combining legacy and recent data
    Zhang, Fangfang
    Liu, Ya
    Wu, Shiwen
    Liu, Jie
    Luo, Yali
    Ma, Yuxin
    Pan, Xianzhang
    GEODERMA, 2024, 450
  • [3] Spatial prediction of soil organic carbon stocks in Ghana using legacy data
    Owusu, Stephen
    Yigini, Yusuf
    Olmedo, Guillermo F.
    Omuto, Christian T.
    Geoderma, 2021, 360
  • [4] Spatial prediction of soil organic carbon stocks in Ghana using legacy data
    Owusu, Stephen
    Yigini, Yusuf
    Olmedo, Guillermo F.
    Omuto, Christian T.
    GEODERMA, 2020, 360
  • [5] Spatial prediction of soil organic carbon from data on large and variable spatial supports. II. Mapping temporal change
    Orton, T. G.
    Saby, N. P. A.
    Arrouays, D.
    Walter, C.
    Lemercier, B.
    Schvartz, C.
    Lark, R. M.
    ENVIRONMETRICS, 2012, 23 (02) : 148 - 161
  • [6] Spatial prediction of soil properties with copulas
    Marchant, B. P.
    Saby, N. P. A.
    Jolivet, C. C.
    Arrouays, D.
    Lark, R. M.
    GEODERMA, 2011, 162 (3-4) : 327 - 334
  • [7] Spatial prediction of surface soil properties using terrain and remote sensing data
    Yasrebi, Jafar
    Saffari, Mahboub
    Fathi, Hamed
    Emadi, Mostafa
    Baghernejad, Majid
    Ronaghi, Abdol-Majid
    Emadi, Mehdi
    Journal of Applied Sciences, 2008, 8 (06) : 1000 - 1006
  • [8] Deep Learning for Spectrum Prediction From Spatial-Temporal-Spectral Data
    Li, Xi
    Liu, Zhicheng
    Chen, Guojun
    Xu, Yinfei
    Song, Tiecheng
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (04) : 1216 - 1220
  • [9] Georeferenced tractor wheel slip data for prediction of spatial variability in soil physical properties
    Kostic, Marko
    Rajkovic, Milos
    Ljubicic, Natasa
    Ivosevic, Bojana
    Radulovic, Mirjana
    Blagojevic, Dragana
    Dedovic, Nebojsa
    PRECISION AGRICULTURE, 2021, 22 (05) : 1659 - 1684
  • [10] Georeferenced tractor wheel slip data for prediction of spatial variability in soil physical properties
    Marko Kostić
    Miloš Rajković
    Nataša Ljubičić
    Bojana Ivošević
    Mirjana Radulović
    Dragana Blagojević
    Nebojša Dedović
    Precision Agriculture, 2021, 22 : 1659 - 1684