Nanoscale layers in polymers to promote ion transport

被引:19
作者
Trigg, Edward B. [1 ,2 ]
Winey, Karen I. [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA
[2] Air Force Res Lab RXCC, Dayton, OH 45433 USA
来源
MOLECULAR SYSTEMS DESIGN & ENGINEERING | 2019年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
DIENE METATHESIS POLYMERIZATION; PRECISE ACID; PROTON CONDUCTIVITY; NANOSHEET; CRYSTALLIZATION; MORPHOLOGY; COPOLYMERS; POLYETHYLENES; ELECTROLYTES; POLYMORPHISM;
D O I
10.1039/c8me00086g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer membranes with enhanced charge transport properties would enable solid-state batteries with improved safety, increased lifetime, and decreased cost. However, the ion conductivity of polymers remains low after decades of research. Here, we advocate for an alternative design strategy for ion-conducting polymers, wherein a precisely periodic chemical microstructure leads to backbone crystallization, controlled hairpin chain folding at the position of each functional group, and ordered layers of sub-nanometer thickness that function as pathways for charge transport. This chain-folded layered structure is observed in a linear polyethylene with sulfonic acid groups pendant to precisely every 21st carbon atom, and the membrane exhibits high proton conductivity at high humidity, matching the benchmark membrane Nafion 117. We discuss related instances of ion and proton transport through thin layers in polymers, as well as other examples of controlled polymer folding leading to ordered nanoscale layers. We also propose design rules for achieving the chain-folded layered structure in new polymers. This layered structure has the potential for improved charge transport relative to amorphous polymers, representing a significant advance in ion-conducting polymer membranes.
引用
收藏
页码:252 / 262
页数:11
相关论文
共 56 条
[1]   Precision Ionomers: Synthesis and Thermal/Mechanical Characterization [J].
Aitken, Brian S. ;
Buitrago, C. Francisco ;
Heffley, Jason D. ;
Lee, Minjae ;
Gibson, Harry W. ;
Winey, Karen I. ;
Wagener, Kenneth B. .
MACROMOLECULES, 2012, 45 (02) :681-687
[2]   Synthesis and morphology of well-defined poly(ethylene-co-acrylic acid) copolymers [J].
Baughman, Travis W. ;
Chan, Christopher D. ;
Winey, Karen I. ;
Wagener, Kenneth B. .
MACROMOLECULES, 2007, 40 (18) :6564-6571
[3]   Probing the effects of hydrophilic branch size, distribution, and connectivity in amphiphilic polyethylene [J].
Berda, Erik B. ;
Wagener, Kenneth B. .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2008, 209 (15) :1601-1611
[4]   Precisely defined amphiphilic graft copolymers [J].
Berda, Erik B. ;
Lande, Rachel E. ;
Wagener, Kenneth B. .
MACROMOLECULES, 2007, 40 (24) :8547-8552
[5]   MICROSCOPIC INVESTIGATION OF IONIC-CONDUCTIVITY IN ALKALI-METAL SALTS POLY(ETHYLENE OXIDE) ADDUCTS [J].
BERTHIER, C ;
GORECKI, W ;
MINIER, M ;
ARMAND, MB ;
CHABAGNO, JM ;
RIGAUD, P .
SOLID STATE IONICS, 1983, 11 (01) :91-95
[6]   A SHORT LINEAR PEPTIDE THAT FOLDS INTO A NATIVE STABLE BETA-HAIRPIN IN AQUEOUS-SOLUTION [J].
BLANCO, FJ ;
RIVAS, G ;
SERRANO, L .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (09) :584-590
[7]   Synthesis and crystallization of precision ADMET polyolefins containing halogens [J].
Boz, Emine ;
Wagener, Kenneth B. ;
Ghosal, Anindya ;
Fu, Riqiang ;
Alamo, Rufina G. .
MACROMOLECULES, 2006, 39 (13) :4437-4447
[8]   Room Temperature Morphologies of Precise Acid- and Ion-Containing Polyethylenes [J].
Buitrago, C. Francisco ;
Jenkins, Janelle E. ;
Opper, Kathleen L. ;
Aitken, Brian S. ;
Wagener, Kenneth B. ;
Alam, Todd M. ;
Winey, Karen I. .
MACROMOLECULES, 2013, 46 (22) :9003-9012
[9]   Precise Acid Copolymer Exhibits a Face-Centered Cubic Structure [J].
Buitrago, C. Francisco ;
Opper, Kathleen L. ;
Wagener, Kenneth B. ;
Winey, Karen I. .
ACS MACRO LETTERS, 2012, 1 (01) :71-74
[10]   Controlling Interlamellar Spacing in Periodically Grafted Amphiphilic Copolymers [J].
Chanda, Sananda ;
Ramakrishnan, S. .
MACROMOLECULES, 2016, 49 (09) :3254-3263