Augmenting QAOA Ansatz with Multiparameter Problem-Independent Layer

被引:11
作者
Chalupnik, Michelle [1 ]
Melo, Hans [2 ]
Alexeev, Yuri [3 ]
Galda, Alexey [2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Menten AI Inc, San Francisco, CA 94111 USA
[3] Argonne Natl Lab, Computat Sci Div, Lemont, IL 60439 USA
来源
2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022) | 2022年
关键词
QUANTUM-CHEMISTRY;
D O I
10.1109/QCE53715.2022.00028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The quantum approximate optimization algorithm (QAOA) promises to solve classically intractable computational problems in the area of combinatorial optimization. A growing amount of evidence suggests that the originally proposed form of the QAOA ansatz is not optimal, however. To address this problem, we propose an alternative ansatz, which we call QAOA+, that augments the traditional p = 1 QAOA ansatz with an additional multiparameter problem-independent layer. The QAOA+ ansatz allows obtaining higher approximation ratios than p = 1 QAOA while keeping the circuit depth below that of p = 2 QAOA, as benchmarked on the MaxCut problem for random regular graphs. We additionally show that the proposed QAOA+ ansatz, while using a larger number of trainable classical parameters than with the standard QAOA, in most cases outperforms alternative multiangle QAOA ansfitze for fixed number of independent parameters.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 57 条
  • [1] Alexeev Y., 2020, B AM PHYS SOC, V65
  • [2] Quantum Computer Systems for Scientific Discovery
    Alexeev, Yuri
    Bacon, Dave
    Brown, Kenneth R.
    Calderbank, Robert
    Carr, Lincoln D.
    Chong, Frederic T.
    DeMarco, Brian
    Englund, Dirk
    Farhi, Edward
    Fefferman, Bill
    Gorshkov, Alexey, V
    Houck, Andrew
    Kim, Jungsang
    Kimmel, Shelby
    Lange, Michael
    Lloyd, Seth
    Lukin, Mikhail D.
    Maslov, Dmitri
    Maunz, Peter
    Monroe, Christopher
    Preskill, John
    Roetteler, Martin
    Savage, Martin J.
    Thompson, Jeff
    [J]. PRX QUANTUM, 2021, 2 (01):
  • [3] Analogue quantum chemistry simulation
    Argueello-Luengo, Javier
    Gonzalez-Tudela, Alejandro
    Shi, Tao
    Zoller, Peter
    Cirac, J. Ignacio
    [J]. NATURE, 2019, 574 (7777) : 215 - +
  • [4] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [5] Boulebnane S., ARXIV
  • [6] Cost function dependent barren plateaus in shallow parametrized quantum circuits
    Cerezo, M.
    Sone, Akira
    Volkoff, Tyler
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] Robust Control Optimization for Quantum Approximate Optimization Algorithms
    Dong, Yulong
    Meng, Xiang
    Lin, Lin
    Kosut, Robert
    Whaley, K. Birgitta
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 249 - 256
  • [8] Crooks GE, 2018, Arxiv, DOI [arXiv:1811.08419, 10.48550/ARXIV.1811.08419]
  • [9] Warm-starting quantum optimization
    Egger, Daniel J.
    Marecek, Jakub
    Woerner, Stefan
    [J]. QUANTUM, 2021, 5
  • [10] Farhi E., 2019, arXiv