Multi-scale approach to estimating aboveground biomass in the Brazilian Amazon using Landsat and LiDAR data

被引:5
作者
Dos Santos, Erone Ghizoni [1 ]
Shimabukuro, Yosio Edemir [1 ]
De Moura, Yhasmin Mendes [2 ]
Goncalves, Fabio Guimaraes [3 ]
Jorge, Anderson [1 ]
Gasparini, Kaio Alan [1 ]
Arai, Egidio [1 ]
Duarte, Valdete [1 ]
Ometto, Jean Pierre [4 ]
机构
[1] Natl Inst Space Res INPE, Remote Sensing Dept, Sao Jose Dos Campos, Brazil
[2] Univ Leicester, Ctr Landscape & Climate Res, Leicester, Leics, England
[3] Canopy Remote Sensing Solut, Florianopolis, SC, Brazil
[4] Natl Inst Space Res INPE, Earth Syst Sci Ctr CCST, Sao Jose Dos Campos, Brazil
基金
巴西圣保罗研究基金会;
关键词
FOREST BIOMASS; VEGETATION; PERFORMANCE; MODELS; INDEX;
D O I
10.1080/2150704X.2019.1619955
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Forest degradation from either natural or anthropogenic drivers involves processes that change the capacity of the ecosystem to provide services. In Brazil, estimates of carbon emissions do not currently take into account emissions from forest degradation caused by fire or by selective logging. Here, we present a methodology to estimate aboveground biomass in forest degradedareas, that can be accounted to estimate carbon emissions. We explored a multi-scale and temporal approach involving Airborne Laser Scanning (ALS) and orbital images from Landsat 8 Operational Land Imager (OLI) sensor to estimate the aboveground biomass. Cross-validation results showed that 49% of the variation in biomass could be explained using this approach, with an estimation error 58 Mg ha(-1) (49.08%). Due to the difficulty in measuring biomass in tropical forests, the proposed methodology can be an alternative in future works to estimate aboveground biomass in order to improve the estimates of carbon emissions by the governmental organizations.
引用
收藏
页码:8635 / 8645
页数:11
相关论文
共 46 条
[41]   Distribution of aboveground live biomass in the Amazon basin [J].
Saatchi, S. S. ;
Houghton, R. A. ;
Alvala, R. C. Dos Santos ;
Soares, J. V. ;
Yu, Y. .
GLOBAL CHANGE BIOLOGY, 2007, 13 (04) :816-837
[42]   Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia [J].
Sato, Luciane Yumie ;
Faria Gomes, Vitor Conrado ;
Shimabukuro, Yosio Edemir ;
Keller, Michael ;
Arai, Egidio ;
Nara dos-Santos, Maiza ;
Brown, Irving Foster ;
Oliveira e Cruz de Aragao, Luiz Eduardo .
REMOTE SENSING, 2016, 8 (10)
[43]   THE LEAST-SQUARES MIXING MODELS TO GENERATE FRACTION IMAGES DERIVED FROM REMOTE-SENSING MULTISPECTRAL DATA [J].
SHIMABUKURO, YE ;
SMITH, JA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1991, 29 (01) :16-20
[44]   Vegetation profiles in tropical forests from multibaseline interferometric synthetic aperture radar, field, and lidar measurements [J].
Treuhaft, R. N. ;
Chapman, B. D. ;
dos Santos, J. R. ;
Goncalves, F. G. ;
Dutra, L. V. ;
Graca, P. M. L. A. ;
Drake, J. B. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[45]   RED AND PHOTOGRAPHIC INFRARED LINEAR COMBINATIONS FOR MONITORING VEGETATION [J].
TUCKER, CJ .
REMOTE SENSING OF ENVIRONMENT, 1979, 8 (02) :127-150
[46]   Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product [J].
Vermote, Eric ;
Justice, Chris ;
Claverie, Martin ;
Franch, Belen .
REMOTE SENSING OF ENVIRONMENT, 2016, 185 :46-56