How can mathematics help us explore vertebrate segmentation?

被引:12
作者
Baker, Ruth E. [1 ]
Schnell, Santiago [2 ,3 ]
机构
[1] Math Inst, Ctr Math Biol, Oxford OX1 3LB, England
[2] Univ Michigan, Sch Med, Dept Mol & Integrat Physiol, Ctr Computat Med & Biol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Sch Med, Brehm Ctr Type Diabet Res & Anal 1, Ann Arbor, MI 48109 USA
来源
HFSP JOURNAL | 2009年 / 3卷 / 01期
关键词
SOMITE FORMATION; CLOCK; SOMITOGENESIS; MECHANISM; FRONT; OSCILLATIONS; NETWORK; NOTCH;
D O I
10.2976/1.3072371
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since the discovery of gene products oscillating during the formation of vertebral segments, much attention has been directed toward eluciating the molecular basis of the so-called segmentation clock. What research has told us is, that even in the most simple vertebrates, enormously complicated gene networks act in each cell to give rise to oscillations, and that cell-cell communication synchronizes these oscillations between neighboring cells. A number of theories have been proposed to explain both the initiation and maintenance of oscillations in a single cell and the synchronization of such oscillations between cells. We discuss these theories in this Commentary. [DOI: 10.2976/1.3072371]
引用
收藏
页码:1 / 5
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 2003, COURIER CORPORATION
[2]   A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation [J].
Aulehla, Alexander ;
Wiegraebe, Winfried ;
Baubet, Valerie ;
Wahl, Matthias B. ;
Deng, Chuxia ;
Taketo, Makoto ;
Lewandoski, Mark ;
Pourquie, Olivier .
NATURE CELL BIOLOGY, 2008, 10 (02) :186-U56
[3]   A clock and wavefront mechanism for somite formation [J].
Baker, RE ;
Schnell, S ;
Maini, PK .
DEVELOPMENTAL BIOLOGY, 2006, 293 (01) :116-126
[4]   Mathematical models for somite formation [J].
Baker, Ruth E. ;
Schnell, Santiago ;
Maini, Philip K. .
MULTISCALE MODELING OF DEVELOPMENTAL SYSTEMS, 2008, 81 :183-203
[5]   CLOCK AND WAVEFRONT MODEL FOR CONTROL OF NUMBER OF REPEATED STRUCTURES DURING ANIMAL MORPHOGENESIS [J].
COOKE, J ;
ZEEMAN, EC .
JOURNAL OF THEORETICAL BIOLOGY, 1976, 58 (02) :455-476
[6]   Segmental patterning of the vertebrate embryonic axis [J].
Dequeant, Mary-Lee ;
Pourquie, Olivier .
NATURE REVIEWS GENETICS, 2008, 9 (05) :370-382
[7]   A complex oscillating network of signaling genes underlies the mouse segmentation clock [J].
Dequeant, Mary-Lee ;
Glynn, Earl ;
Gaudenz, Karin ;
Wahl, Matthias ;
Chen, Jie ;
Mushegian, Arcady ;
Pourquie, Olivier .
SCIENCE, 2006, 314 (5805) :1595-1598
[8]   FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation [J].
Dubrulle, J ;
McGrew, MJ ;
Pourquié, O .
CELL, 2001, 106 (02) :219-232
[9]   Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways [J].
Goldbeter, Albert ;
Pourquie, Olivier .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 252 (03) :574-585
[10]  
Gossler A, 1998, CURR TOP DEV BIOL, V38, P225