Rigidity theorems on conformal class of compact manifolds with boundary

被引:4
作者
Barbosa, Ezequiel [1 ,4 ]
Mirandola, Heudson. [2 ,4 ]
Vitorio, Feliciano [3 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Exatas, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, RJ, Brazil
[3] Univ Fed Alagoas, Inst Matemat, BR-57072900 Maceio, Al, Brazil
[4] Univ London Imperial Coll Sci Technol & Med, Huxley Bldg,180 Queens Gate, London SW7 2RH, England
关键词
Static metrics; Conformal class; Rigidity theorems; Min-Oo problem; Scalar curvature; Mean curvature; MEAN-CURVATURE; UNIQUENESS; METRICS; SCALAR;
D O I
10.1016/j.jmaa.2016.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a compact manifold with boundary. In this paper, we discuss some rigidity theorems on Riemannian metrics in a same conformal class that fix the boundary and satisfy certain integral condition on the scalar curvature and on the mean curvature along the boundary. As an application, we will state some rigidity theorems on the conformal class of static metrics. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:629 / 637
页数:9
相关论文
共 9 条
[1]   Critical points of the Total Scalar Curvature plus Total Mean Curvature functional [J].
Araújo, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (01) :85-107
[2]   Deformations of the hemisphere that increase scalar curvature [J].
Brendle, Simon ;
Marques, Fernando C. ;
Neves, Andre .
INVENTIONES MATHEMATICAE, 2011, 185 (01) :175-197
[3]   Uniqueness and non-uniqueness of metrics with prescribed scalar and mean curvature on compact manifolds with boundary [J].
Escobar, JF .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 202 (02) :424-442
[5]  
Gilbarg D., 1983, Elliptic Partial Equations of Second Order, V2nd
[6]  
Hang FB, 2006, COMMUN ANAL GEOM, V14, P91
[7]   Rigidity Theorems for Compact Manifolds with Boundary and Positive Ricci Curvature [J].
Hang, Fengbo ;
Wang, Xiaodong .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (03) :628-642
[8]   Sharp estimates and the Dirac operator [J].
Llarull, M .
MATHEMATISCHE ANNALEN, 1998, 310 (01) :55-71
[9]  
Min-Oo M., 1995, SCALAR CURVATU UNPUB