Multi-innovation stochastic gradient algorithms for multi-input multi-output systems

被引:133
|
作者
Han, Lili [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic gradient; Parameter estimation; Filtering; Multi-innovation identification; Multi-input multi-output systems; SQUARES IDENTIFICATION METHODS; PERFORMANCE ANALYSIS; LEAST; MODEL; PARAMETERS;
D O I
10.1016/j.dsp.2008.12.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a multi-innovation stochastic gradient (MISG) algorithm for multi-input multi-output systems by expanding the innovation vector to an innovation matrix. The convergence analysis shows that the parameter estimates by the MISG algorithm consistently converge to the true parameters under the persistent excitation condition. The MISG algorithm uses not only the current innovation but also the past innovation at each iteration and repeatedly utilizes the available input-output data, thus the parameter estimation accuracy can be improved. The simulation example confirms the theoretical results. (c) 2008 Published by Elsevier Inc.
引用
收藏
页码:545 / 554
页数:10
相关论文
共 50 条
  • [41] Multi-innovation Stochastic Gradient Algorithms for Input Nonlinear Time-Varying Systems Based on the Line Search Strategy
    Qianyan Shen
    Jing Chen
    Xingyun Ma
    Circuits, Systems, and Signal Processing, 2019, 38 : 2023 - 2038
  • [42] Maximum Likelihood Multi-innovation Stochastic Gradient Estimation for Multivariate Equation-error Systems
    Liu, Lijuan
    Ding, Feng
    Wang, Cheng
    Alsaedi, Ahmed
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2018, 16 (05) : 2528 - 2537
  • [43] Probabilistic data association detectors for multi-input multi-output relaying system
    Mei, Z.
    Yang, Z.
    Li, X.
    Wu, L.
    IET COMMUNICATIONS, 2011, 5 (04) : 534 - 541
  • [44] Fractal detector design and analysis for multi-input multi-output radar system
    Yang Jin
    Chen Haowen
    Li Xiang
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2016, 10 (03) : 207 - 214
  • [45] Gradient-based iterative parameter identification for multi-input multi-output OEMA-like models
    Zhang, Zhening
    Ding, Feng
    Wang, Dongqing
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 4269 - 4274
  • [46] The multi-innovation stochastic gradient method for multi-frequency signal models
    Xu, Ling
    Ding, Feng
    Wang, Yanjiao
    Xie, Li
    Li, Junhong
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 1126 - 1131
  • [47] Multimodel-based techniques for the identification and adaptive control of delayed multi-input multi-output systems
    Herrera, J.
    Ibeas, A.
    Alcantara, S.
    de la Sen, M.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (01) : 188 - 202
  • [48] A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems
    Mao, Yawen
    Ding, Feng
    DIGITAL SIGNAL PROCESSING, 2015, 46 : 215 - 225
  • [49] Several multi-innovation identification methods
    Ding, Feng
    DIGITAL SIGNAL PROCESSING, 2010, 20 (04) : 1027 - 1039
  • [50] Maximum likelihood based multi-innovation stochastic gradient identification algorithms for bilinear stochastic systems with ARMA noise
    An, Shun
    He, Yan
    Wang, Longjin
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (10) : 2690 - 2705