Multi-innovation stochastic gradient algorithms for multi-input multi-output systems

被引:133
|
作者
Han, Lili [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic gradient; Parameter estimation; Filtering; Multi-innovation identification; Multi-input multi-output systems; SQUARES IDENTIFICATION METHODS; PERFORMANCE ANALYSIS; LEAST; MODEL; PARAMETERS;
D O I
10.1016/j.dsp.2008.12.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a multi-innovation stochastic gradient (MISG) algorithm for multi-input multi-output systems by expanding the innovation vector to an innovation matrix. The convergence analysis shows that the parameter estimates by the MISG algorithm consistently converge to the true parameters under the persistent excitation condition. The MISG algorithm uses not only the current innovation but also the past innovation at each iteration and repeatedly utilizes the available input-output data, thus the parameter estimation accuracy can be improved. The simulation example confirms the theoretical results. (c) 2008 Published by Elsevier Inc.
引用
收藏
页码:545 / 554
页数:10
相关论文
共 50 条
  • [1] Multi-innovation Generalized Extended Stochastic Gradient Algorithm for Multi-Input Multi-Output Nonlinear Box-Jenkins Systems Based on the Auxiliary Model
    Chen, Jing
    Wang, Xiuping
    LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT I, 2010, 6328 : 136 - +
  • [2] Convergence Properties of Multi-Innovation ESG Algorithms for Multi-Input Multi-Output CARMA Models
    Jie, Ding
    Yang, Shi
    Feng, Ding
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 3, 2008, : 270 - +
  • [3] Multi-innovation extended stochastic gradient algorithm for multi-input multi-output controlled autoregressive moving average systems by using the filtering technique
    Jiang, Xiao
    Pan, Jian
    Wan, Xiangkui
    Ding, Feng
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 925 - 929
  • [4] Maximum likelihood stochastic gradient parameter estimation algorithm for multi-input multi-output systems
    Li, Junhong
    Jiang, Ping
    Yang, Yi
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 602 - 605
  • [5] The filtering based multi-innovation stochastic gradient algorithm for multi-input output-error systems
    Ding, Jiling
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 128 - 133
  • [6] Auxiliary model based multi-innovation stochastic gradient identification for multirate multi-input systems
    Han, Lili
    Ding, Jie
    Ding, Feng
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 619 - 623
  • [7] Identification for multirate multi-input systems using the multi-innovation identification theory
    Han, Lili
    Ding, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (09) : 1438 - 1449
  • [8] HLS parameter estimation for multi-input multi-output systems
    Yuan, Ping
    Ding, Feng
    Liu, Peter X.
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 857 - +
  • [9] On consistency of multi-innovation extended stochastic gradient algorithms with colored noises
    Yu, Li
    Ding, Feng
    Liu, Peter X.
    2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2008, : 1695 - +
  • [10] Multi-innovation Stochastic Gradient Parameter Estimation for Input Nonlinear Controlled Autoregressive Models
    Xiao, Yongsong
    Song, Guanglei
    Liao, Yuwu
    Ding, Ruifeng
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2012, 10 (03) : 639 - 643