Non-leaving-face property for marked surfaces

被引:2
作者
Brustle, Thomas [1 ]
Zhang, Jie [2 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Marked surface; non-leaving-face property; exchange graph; 13F60; 13E10; 16G20; CLUSTER ALGEBRAS; ASSOCIAHEDRA; DIAMETER;
D O I
10.1007/s11464-019-0767-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the polytope arising from a marked surface by flips of triangulations. D. D. Sleator, R. E. Tarjan, and W. P. Thurston [J. Amer. Math. Soc., 1988, 1(3): 647-681] studied the diameter of the associahedron, which is the polytope arising from a marked disc by flips of triangulations. They showed that every shortest path between two vertices in a face does not leave that face. We give a new method, which is different from the one used by V. Disarlo and H. Parlier [arXiv: 1411.4285] to establish the same non-leaving-face property for all unpunctured marked surfaces.
引用
收藏
页码:521 / 534
页数:14
相关论文
共 20 条
[1]  
Brüsde T, 2013, EMS SER CONGR REP, P135
[2]   Tagged mapping class groups: Auslander-Reiten translation [J].
Bruestle, Thomas ;
Qiu, Yu .
MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) :1103-1120
[3]   A MODULE-THEORETIC INTERPRETATION OF SCHIFFLER'S EXPANSION FORMULA [J].
Bruestle, Thomas ;
Zhang, Jie .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (01) :260-283
[4]  
Brüstle T, 2011, ALGEBR NUMBER THEORY, V5, P529
[5]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[6]   The diameter of type D associahedra and the non-leaving-face property [J].
Ceballos, Cesar ;
Pilaud, Vincent .
EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 :109-124
[7]   Polytopal realizations of generalized associahedra [J].
Chapoton, F ;
Fomin, S ;
Zelevinsky, A .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (04) :537-566
[8]  
Disarlo V, ARXIV 1411 4285
[9]   Cluster algebras II: Finite type classification [J].
Fomin, S ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2003, 154 (01) :63-121
[10]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529