Local well-posedness in critical spaces for the compressible MHD equations

被引:6
作者
Bian, Dongfen [1 ,2 ]
Yuan, Baoquan [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat, Jiaozuo 454000, Henan, Peoples R China
[2] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
compressible MHD equations; Besov spaces; critical spaces; Littlewood-Paley theory; local well-posedness; NAVIER-STOKES EQUATIONS; SHALLOW-WATER EQUATIONS; HEAT-CONDUCTIVE GASES/; GLOBAL EXISTENCE; VISCOUS FLUIDS; CAUCHY-PROBLEM; DENSITY; FLOW;
D O I
10.1080/00036811.2014.910651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove local well-posedness in critical Besov spaces for the compressible MHD equations in R-N,R- N >= 2, under the assumptions that the initial density is bounded above and bounded away from zero. The proof relies on uniform estimates for a mixed hyperbolic/parabolic linear system with a convection term.
引用
收藏
页码:239 / 269
页数:31
相关论文
共 29 条
[11]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614
[12]   Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density [J].
Danchin, R. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1373-1397
[13]   On the uniqueness in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2005, 12 (01) :111-128
[14]   Density-dependent incompressible viscous fluids in critical spaces [J].
Danchin, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1311-1334
[15]   Global existence in critical spaces for flows of compressible viscous and heat-conductive gases [J].
Danchin, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 160 (01) :1-39
[16]   Local theory in critical spaces for compressible viscous and heat-conductive gases [J].
Danchin, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (7-8) :1183-1233
[17]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[18]   CAUCHY PROBLEM FOR VISCOUS SHALLOW WATER EQUATIONS WITH A TERM OF CAPILLARITY [J].
Haspot, Boris .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (07) :1049-1087
[19]   MULTIDIMENSIONAL DIFFUSION WAVES FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLOW [J].
HOFF, D ;
ZUMBRUN, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (02) :603-676
[20]  
ITAYA N., 1976, J. Math. Kyoto Univ., V16, P413, DOI [10.1215/kjm/1250522922, DOI 10.1215/KJM/1250522922]